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Samenvatting

Tegenwoordig slaan bedrijven en andere organisaties gigantische volumes aan elek-
tronische gegevens op. Dit komt omdat dataopslag steeds goedkoper wordt en
omdat men ex-post wil of moet kunnen nagaan waar fouten, problemen, enz. zijn
voorgekomen in de bedrijfsvoering. Echter, er is hoofdzakelijk geïnvesteerd in da-
taverzameling en -opslag terwijl investeringen in het effectief analyseren van de
data achterop hinkt. Daarbij komt dat bedrijfsprocessen in het algemeen meer en
meer geautomatiseerd worden wat ervoor zorgt dat het steeds makkelijker wordt
om data over de uitvoering ervan bij te houden. Deze automatisering wordt ge-
stuurd door informatiesystemen die de bedrijfsprocessen coördineren en facilite-
ren. Wanneer deze informatiesystemen op een gestructureerde manier bijhouden
welke stappen in een bedrijfsproces worden uitgevoerd ontstaat er een interes-
sante opportuniteit om inzicht te verwerven in hoe bedrijfsprocessen in werkelijk-
heid worden uitgevoerd. Dat dergelijke analyse meer en meer aan relevantie wint
wordt versterkt door het feit dat automatisering ook met zich meebrengt dat het
moeilijker is om een goed overzicht te behouden over het end-to-end proces.

De nood aan concrete inzichten om de operationele bedrijfsvoering te optima-
liseren heeft tot gevolg dat data-analysetechnieken aan relevantie winnen. Process
Mining is een relatief jong onderzoeksdomein dat zich kenmerkt door een speci-
fieke focus op de ontwikkeling en het gebruik van algoritmes en technieken voor
de analyse van executiedata van allerhande bedrijfsprocessen. De doelstelling van
Process Mining is om niet-triviale kennis te ontdekken op basis van de data die
opgeslagen worden door informatiesystemen met als doel de bedrijfsprocessen te
verbeteren. Eén van de belangrijke taken in het domein is process discovery, met
name de automatische constructie van een procesmodel dat weergeeft hoe een
bedrijfsproces er in werkelijkheid uitziet en dit op basis van de data in een event
log.

ix
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Process Mining: Op het raakvlak tussen BPM and KDD
Process Mining bevindt zich op het raakvlak tussen twee ruimere onderzoeks-
domeinen, meer bepaald Business Process Management (BPM) en Knowledge
Discovery in Databases (KDD). Business Process Management (BPM) is de ver-
zamelnaam voor technieken, concepten en tools voor het ontwerp, de uitvoering,
de controle en de analyse van bedrijfsprocessen binnen een organisatie. Process
Mining-technieken kunnen een cruciale rol spelen in de vervollediging van de le-
venscyclus van een typisch bedrijfsproces, met name wat betreft de analyse en
verbetering van een bepaalde procesimplementatie. Merk op dat Process Mining
in die zin veel verder gaat dan traditionele Business Intelligence (BI). Een Pro-
cess Mining-analyse start bottom-up, vertrekkende van de executiedata, en is veel
ingrijpendere dan bijvoorbeeld de evaluatie van KPI’s. Behalve met het BPM-
domein heeft Process Mining ook veel gemeenschappelijk met het KDD-veld.
Knowledge Discovery in Databases omvat het niet-triviale proces om geldige,
nieuwe, potentieel bruikbare en verstaanbare patronen te ontdekken in data. Hier-
bij spelen data mining-technieken een cruciale rol omdat ze in staat zijn om net
dit soort patronen te vinden. Zowel onderzoek naar als het gebruik van derge-
lijke technieken is in het laatste decennium sterk toegenomen omdat bedrijven
met sterke data-analysecapaciteiten een significant competitief voordeel kunnen
creëren.

Process Mining blijkt in die mate nuttig omdat de technieken twee belang-
rijke hiaten in de levenscyclus van een bedrijfsproces kunnen bloot leggen. Meer
bepaald maakt Process Mining het mogelijk om de verschillen tussen hoe busi-
nessanalisten het proces uittekenen en hoe de werkelijke implementatie gebeurt
te expliciteren. Ten tweede stelt het analisten ook in staat om de uitvoering door
eindgebruikers te contrasteren met de systeemconfiguratie en het procesontwerp.
De kennis die op die manier beschikbaar wordt, blijkt van onschatbare waarde
voor procesexperts en managers. Figuur 1 illustreert de toegevoegde waarde die
Process Mining kan bieden door patronen te visualiseren en specifieke kennis over
de werkelijke procesexecutie naar boven te brengen zodat deze informatie kan ge-
bruikt worden om zowel het ontwerp als de implementatie van het bedrijfsproces
te verbeteren.

De bijdragen die in deze thesis worden voorgesteld, kunnen volledig gesitueerd
worden binnen het domein van Process Mining. De thesis bevat vier belangrijke
onderdelen waarbij, process discovery, zijnde het automatisch ontdekken van pro-
cesmodellen, het centrale thema vormt.

Metrieken voor het evalueren van ontdekte procesmodellen
Het eerste deel van dit proefschrift behandelt het probleem van de evaluatie van
de kwaliteit van ontdekte procesmodellen. De kwaliteit van een ontdekt proces-
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Figuur 1: Het nut van Process Mining geïllustreerd

model kan worden beoordeeld vanuit verschillende perspectieven. Op het hoogste
niveau valt de evaluatie van een procesmodel uiteen in twee elementen: accuraat-
heid en begrijpbaarheid. Onze bijdrage is tweeledig. Allereerst wordt een analyse
uitgevoerd van de kwaliteit van bestaande evaluatiemetrieken. Ten tweede wordt
een nieuwe precisiemetriek voorgesteld, gebaseerd op de idee om artificiële nega-
tieve events te induceren in een een event log. Deze metriek ligt aan de basis voor
de toepassing van de F-score voor de evaluatie van een ontdekt procesmodel. We
beschouwen deze nieuwe evaluatiemethode als een eerste stap in de richting van
een omvattend evaluatiekader voor procesontdekkingstechnieken.

Onze bijdragen werden beschreven en gepubliceerd in:

• J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A
Critical Evaluation Study of Model-Log Metrics in Process Disco-
very. In M. zur Muehlen and J. Su, editors, Business Process Manage-
ment Workshops, 66 of Lecture Notes in Business Information Processing,
pages 158–169. Springer, 2010.

• J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens.
A robust F-measure for evaluating discovered process models. In
CIDM, pages 148–155. IEEE, 2011.
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Evalueren van procesontdekkingstechnieken aan de hand van
real-life procesgegevens
In het domein van Process Mining wordt er traditioneel gebruik gemaakt van arti-
ficiële gegevens bij de ontwikkeling en evaluatie van procesontdekkingstechnieken.
Dit is logisch omwille van het feit dat onderzoekers op die manier eenvoudig de
kwaliteit van de technieken kunnen evalueren en omdat men speciale procesei-
genschappen kan simuleren waarmee procesontdekkingstechnieken het moeilijk
hebben. Het is echter zo dat het gebruik van levensechte datasets voor de evalua-
tie van dergelijke technieken vrij beperkt is. In deze thesis wordt daarom specifiek
de nadruk gelegd op de evaluatie van procesontdekkingstechnieken vanuit verschil-
lende perspectieven op basis van acht real-life event logs. Hierbij wordt gefocust
op accuraatheid, begrijpbaarheid en schaalbaarheid van de algoritmes.

Dit onderdeel van de thesis werd gepubliceerd in:

• J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A
multi-dimensional quality assessment of state-of-the-art process
discovery algorithms using real-life event logs. Information Systems,
37(7):654–676, 2012.

Actief clusteren van procesinstanties voor betere procesont-
dekkingsresultaten
Eén van de belangrijkste en tegelijkertijd moeilijkste uitdagingen in het Process
Mining-domein bestaat erin om accurate en begrijpbare modellen te ontdekken
uit procesgegevens die opgeslagen worden tijdens de uitvoering van bedrijfsproces-
sen in zeer flexibele omgevingen. Door het beperkte aantal restricties dat wordt
opgelegd aan de actoren in het bedrijfsproces, merken we dat deze flexibiliteit
leidt tot een zeer grote variëteit aan manieren waarop procesinstanties worden
uitgevoerd. Dit zorgt er meteen ook voor dat de toepassing van procesanalyse
net de grootste meerwaarde creëert. Echter, het eenvoudigweg toepassen van pro-
cesontdekkingstechnieken op dit soort gegevens leidt vaak tot onnauwkeurige en
onbegrijpbare procesmodellen. Het clusteren van procesinstanties in meerder sub-
groepen is een interessante piste om dit probleem aan te pakken. Door te clusteren
wordt het mogelijk om één volledige event log op te splitsen in meerdere datasets
zodat het makkelijker wordt voor ontdekkingstechnieken om accurate en begrijp-
bare modellen te construeren. In deze thesis beschrijven we een nieuw algoritme,
ActiTraC genaamd, dat sterk verschilt van eerder voorgestelde algoritmes in de
literatuur. Onze techniek vertrekt van de observatie dat bestaande technieken te
lijden hebben onder het feit dat er een groot verschil is tussen de manier waarop
ze clusteren en de wijze van evaluatie van de clusteroplossing. ActiTraC over-
brugt de kloof tussen clusteren en evalueren door het toepassen van een “active
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learning”-geïnspireerde aanpak waarbij procesinstanties iteratief worden toege-
voegd aan clusters op basis van het feit of de cluster voldoende accuraat blijft na
toevoeging. Uit uitgebreide experimentele analyses blijkt dat ActiTraC in staat is
om zowel op het vlak van accuraatheid als op het vlak van begrijpbaarheid beter
te scoren dan bestaande clusteringtechnieken.

Dit onderdeel van de thesis is in submissie:

• J. De Weerdt, S. vanden Broucke, J. Vanthienen, and B. Baesens.
Active Trace Clustering for Improved Process Discovery. Submitted
to IEEE Transactions on Knowledge and Data Engineering, 2012.

Bedrijfskundige toepassingen
Tot slot bevat deze thesis ook een beschrijving van verschillende gevalstudies die
de kracht van bedrijfsprocesanalyses aan de hand van Process Mining-technieken
demonstreert.

Deze studies zij beschreven en gepubliceerd in:

• J. De Weerdt, A. Schupp, A. Vanderloock, and B. Baesens. Pro-
cess Mining for the multi-faceted analysis of business processes
- A case study in a financial services organization. Computers in
Industry, Forthcoming.

• S. Goedertier, J. De Weerdt, D. Martens, J. Vanthienen, and
B. Baesens. Process discovery in event logs: An application in the
telecom industry. Appl. Soft Comput., 11(2):1697–1710, 2011.

• J. De Weerdt, F. Caron, J. Vanthienen, and B. Baesens. Get-
ting a Grasp on Clinical Pathway Data: An Approach Based on
Process Mining. In The Third Workshop on Data Mining for Healthcare
Management at the 16th Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Kuala Lumpur, Malaysia (forthcoming), 2012.

• J. De Weerdt, S. vanden Broucke, J. Vanthienen, and B. Bae-
sens. Leveraging process discovery with trace clustering and text
mining for intelligent analysis of incident management processes.
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Chapter 1
Introduction

Within today’s organizations, data are being collected and accumulated at a dras-
tic pace. Although a lot of investments have been made in data collection and stor-
age, similar investments in analyzing these data remain behind. Especially with
respect to business processes, automation is increasing incessantly which causes
a significant growth in the availability of process-related data. Within and across
departments, information systems have been put in place in order to coordinate
and facilitate the business processes. Since these systems keep track of every-day
business transactions, important opportunities arise for analysis of process-related
data so as to provide insight into the actual way of working. Moreover, automa-
tion often causes an increased complexity with a reduced overview of the overall
end-to-end process. Because of the lack of sensible overview and tangible insights,
there exist vast opportunities for data analytics, a domain which can be best de-
fined as a broad set of intelligent techniques for gaining insights from data. When
the focal point of these intelligent techniques is business processes, the field of re-
search is often termed Process Mining. To be precise, the key objective of Process
Mining is the extraction of non-trivial knowledge from event data as recorded by
information systems.

This introductory chapter starts with a detailed outline of the field of Process
Mining. Furthermore, the role of intelligent process analysis techniques within
the Business Process Management (BPM) domain is discussed. In addition, we
position the main learning tasks of the process mining domain with respect to
the principles of the broader field of Knowledge Discovery in Databases (KDD).
Finally, the contributions of this thesis are set forth.

1



2 CHAPTER 1. INTRODUCTION

1.1 The Field of Process Mining

Process Mining is a relatively young area of academic research. The main goal of
process mining techniques is to employ process-related data in order to extract
information and knowledge, for instance by automatically discovering a process
model. In this section, the concept of an event log, which is the cornerstone of
analysis, is detailed. Furthermore, the main building blocks of the process mining
domain are discussed.

1.1.1 The Event Log as the Cornerstone of Analysis

As in many other knowledge discovery domains, data are the crucial building
block. Within Process Mining, data are accounted for by the concept of an event
log. A sample event log is shown in Figure 1.1. In the context of such event logs, an
event is defined as the registration of an activity instance state change. Activity
instances are the actual units of work as they represent the actual work conducted
in the context of a certain process instance. States of activity instances are speci-
fied by the enactment language of a certain process modeling paradigm. Different
process modeling paradigms present distinct execution semantics which are de-
fined in terms of state transition diagrams. A very simple state transition diagram
is shown in Figure 1.2. In the process modeling literature, much more elaborate
state transition diagrams are described. For instance, the Object Management
Group (OMG) defines the life cycle of an activity in their Business Process Mod-
eling Notation (BPMN) specification [100]. Furthermore, other process modeling
paradigms such as YAWL (Yet Another Workflow Language), case handling [144]
and declarative approaches (EM-BrA2CE [61], Declare [102]) propose distinct but
similar diagrams for their respective enactment semantics.

Although it is interesting to sift through these different enactment seman-
tics and state transition diagrams, for process mining analysis, the actual data
are crucial. In practice, we often see that process data are pooled from different
repositories originating from CRM, ERP, WfM and other types of information
systems. As a result, a clear correspondence between the theoretical foundation
of the concept of an event in terms of a state transition diagram and the data
found in practice, is difficult to distinguish. In many flexible environments such
as financial services, customer relationship management, product development,
etc. business processes rely on legacy systems or less process-oriented information
systems. Frequently, the registration of the business events is coarse-grained such
that only one type of state transition (e.g. completion of an activity instance) can
be extracted from the actual data. Since Process Mining can be considered most
useful in these flexible environment where systems typically show a much larger
variety of behavior, the translation of the available data sources into an event log
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Case ID Activity Name Event Type Originator Timestamp Extra Data 

001 Make order form Start Employee A 20-07-2012 14:02:06 … 

001 Make order form Complete Employee A 20-07-2012 14:28:29 … 

001 Scan invoice Complete Employee E 10-08-2012 09:52:31 … 

001 Central registration Start Employee B 10-08-2012 10:00:36 … 

001 Central registration Complete Employee B 11-08-2012 10:15:22 … 

002 Make order form Start Employee C 13-08-2012 09:20:01 … 

001 Accept invoice Complete Employee A 13-08-2012 09:20:54 … 

002 Make order form Complete Employee D 13-08-2012 09:21:12 … 

001 Reject invoice Complete Employee A 14-08-2012 14:15:14 … 

001 End Complete System 14-08-2012 14:15:15 … 

003 Make order form Start Employee A 16-08-2012 19:22:56 … 

003 Make order form Complete Employee A 16-08-2012 19:22:59 … 

002 Scan Invoice Complete Employee E 16-08-2012 19:23:00 … 

003 Central registration Start Employee D 19-08-2012 07:52:41 … 

003 Scan invoice Complete Employee E 19-08-2012 15:21:39 … 

002 Central registration Start Employee E 19-08-2012 15:21:40 … 

003 Central registration Complete Employee D 21-08-2012 09:09:39 … 

002 Central registration Complete Employee D 21-08-2012 09:15:35 … 

002 Request for change Start Employee A 21-08-2012 15:01:39 … 

003 Accept invoice Complete Employee A 22-08-2012 14:21:00 … 

003 … … … … … 

Figure 1.1: An example of a typical event log

closed

not started

init ready running terminated

skipped

skip

initialize enable start complete

Figure 1.2: A simple state transition diagram

is often a non-trivial task. Amongst others, this is due to the lagging adoption of
Business Process Management Systems (BPMSs) in practice.

The actual collection of event logs from information system’s repositories is
often carried out by means of text-based data formats. In reality, process data
are scattered over different data sources and it can be a tedious task to define the
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exact scope of the process under study. As a consequence, an extensive ETL-phase
is required more often than not before any concrete analysis can be initiated.
Also, the extracted data should be converted into a typical event log storage
format. The earliest approach for storing event logs is MXML (Mining eXtensible
Markup Language). Since 2003, this format used to be the de facto standard since
it was tightly coupled with the ProM-framework, an academic tool for Process
Mining. Only recently, a successor of MXML was adopted by the IEEE Task
Force on Process Mining. This new format, called XES (eXtensible Event Stream),
improves the original standard because it is less restrictive. The meta-model of
XES is described in [69].

As event logs are the cornerstone for Process Mining, it is important to state
the different requirements to which an event log should comply. The following
three assumptions are crucial:

• events must refer to a well-defined step (activity instance) in a process in-
stance identified by a unique activity name

• events must refer to distinct process instances or cases by making use of an
ID

• events must be recorded in a totally ordered way, preferably by containing
a timestamp

A formal definition of an event log. As stated, an event log consists of
events that pertain to process instances. A process instance is defined as a logical
grouping of activities whose state changes are recorded as events. We thus assume
that it is possible to record events such that each event refers to a task (a step in a
process instance), a case (the process instance) and that events are totally ordered.
As such, let X be a set of event identifiers, P a set of case identifiers, the alphabet
A a set of activity types and the alphabet E a set of event types corresponding
with activity life cycle state transitions (e.g. start, assign, skip, complete, etc.).
An event can then be formulated as a predicate Event(x, p, a, e, t) with x ∈ X

the event identifier, p ∈ P the case identifier and a ∈ A the activity type, e ∈ E
the event type and t ∈ N the position of the event in its process sequence. Note
that events commonly store much more information (timestamps, originators, case
data, etc.), but for the sake of simplicity of the formal definition, this additional
information is left out. Furthermore, it will be assumed that the state transition e
for each logged event equals complete. The function Case ∈ X ∪ L 7→ P denotes
the case identifier of an event or sequence. The function Activity ∈ X 7→ A

denotes the activity type of an event.
Let event log L be a set of process instances. Let pi ∈ L be a process instance or

event sequence; pi = {x|x ∈ X ∧ Case(x) = Case(pi)}. The function Position ∈
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X×L 7→ N0 denotes the position of an event in the corresponding process instance.
The set X of event identifiers has a complete ordering, such that ∀x, y ∈ X : x <
y ∨ y < x and ∀x, y ∈ pi, x < y : Position(x) < Position(y). Let x.y ⊆ pi be
two subsequent event identifiers within a process instance pi; x.y ⇐ ∃x, y ∈ pi :
x < y ∧ @z ∈ pi : x < z < y. We will use this predicate in the context of single
sequences which is therefore left implicit. Furthermore, a sequence of two events
x.y with activity types a and b respectively can be abbreviated as 〈a, b〉. Each pii
in the event log now represents a different execution sequence, corresponding to a
particular process instance, and can be depicted as 〈a, b, c, ..., z〉 with a, b, c, ..., z
the activity types of the ordered events contained in the sequence.

Finally, note that identical process instances (i.e. traces with the same execu-
tion sequence) can be grouped into a distinct process instance, further denoted
as dpi. A dpi is defined as a set of pi with the number of pi in the set denoted as
the frequency of the dpi. A collection of dpi’s is called a grouped event log (GL).

1.1.2 Building Blocks of Process Mining

As soon as the intensive phase of data extraction and transformation has resulted
in a satisfactory event log, diagnosis based on Process Mining can be embarked
on. Based on the ideas in [129] and [130], the fundamental building blocks of the
process mining field are outlined, as represented in Table 1.1. In order to properly
characterize the different process mining activities, two orthogonal dimensions
can be distinguished: the log information dimension and the process mining task
dimension. The former dimension refers to four different types of information
perspectives from which an event log can be looked at. Firstly, the data can be
assessed according to a control-flow view. Here the main focus is on the sequential
relations between the different activities in the event log. Furthermore, organiza-
tional aspects can be at the center of attention. Accordingly, the analysis focuses
on who is performing the different activities in the process and how these so-called
originators are related. Thirdly, the case data view is concerned with extra data
elements that might be available in the event log. Song et al. [121] bring up that
this dimension is the major focus of existing business intelligence and data min-
ing tools. Finally, data about exceptional behavior can be investigated as well, for
example to find out how often or why certain activity instances were aborted.

Orthogonal to the log information dimension, the process mining task dimen-
sion can be identified. The partitioning of process mining activities and techniques
according to more high-level process mining tasks involves the categorization into
three different groups: discovery, conformance and/or compliance and enhance-
ment tasks.

Discovery tasks search for underlying models and knowledge, answering ques-
tions such as “How are processes actually executed?”, “Which types of roles exist
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Log information

Control-flow Resource flow Case data flow Exception
handling
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Table 1.1: Business process mining field

in the process?”, “How are people working together?" and “Who can change cer-
tain case data elements?”. In the literature, especially the control-flow aspect has
received a lot of attention. This subdomain termed process discovery accounts for
a majority of published research papers. With its objective to visualize a collec-
tion of process executions in a process model, a wide range of different algorithms
have been conceived, from the original α-algorithm to evolutionary computation-
inspired approaches. In recent years however, also the resource dimension has
become the subject of intelligent discovery techniques. For instance, the discovery
of organizational structures and social networks between the involved perform-
ers can provide interesting insights into the actual business process. Note that the
discovery of access control rules fits within this task dimension as well. Finally, dis-
covery tasks can also be identified within the case data flow or exception handling
dimensions. Very useful information about cases can be found in their according
data elements, although this information is mainly useful for compliance and/or
enhancement tasks.

Besides discovery tasks, one of the major practical benefits of process mining
techniques lies within conformance and compliance checking tasks. With respect
to this type of tasks, it is important to make a distinction between a narrow
interpretation of conformance checking and the broader domain of compliance
verification. These tasks are definitely intertwined because they both entail the
use of comparative analysis procedures. However, conformance testing is defined
as a set of quantification measures to assess the fit between an event log and a
(process) model. As such, measuring the quality of a discovered process model
based on the event log can also be categorized as conformance checking [96, 107],
although it is more correct to term this task as process discovery evaluation rather
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than conformance checking.
Comparative analyses can be looked at in a broader context as well. For in-

stance, verifying whether actual process behavior as recorded in event logs com-
plies with management expectations, formal business rules and/or legislative reg-
ulations is considered extremely valuable. These tasks can be categorized as com-
pliance verification. Both formal compliance verification (regulatory compliance)
as well as informal compliance verification (management expectations) are en-
abled through the use of process mining techniques. To this, it can be added
that process mining techniques can be applied for auditing purposes as well. For
instance, traditional principles such as the Chinese wall, the four-eyes principle,
and segregation of duties can be verified. Also, Process Mining is an ideal means
for fraud detection within a process-aware information system since it uses the
actual information registered in the system’s logs. Both the detection of formal
and informal inconsistencies between observed and desired behavior can be an
important starting point for process improvement. The severity of the discrepan-
cies can be measured and explanations to support business process improvement
initiatives can be outlined.

Finally, the diagnostic information that can be derived from an event log al-
lows for a third type of tasks: enhancement tasks. Here, the goal is to enrich a
process, organizational or social model with other information. Bottleneck anal-
ysis for example scrutinizes timestamp information of activities, process paths,
performers and organizational units. Another example study fitting within this
task dimension is a study by van der Aalst et al. [140] that elaborates on the
prediction of the future of a running instance. The authors show that it is possi-
ble to answer questions like “When will this instance be completed?” or “What
is the probability that this instance will undergo activity A?” in a very efficient
way. Process Mining can thus be used in a real-time setting as well. Further-
more, Rozinat and van der Aalst [113] outline decision mining which approaches
a control-flow process model as a set of decision points where the analysis tries to
reveal the correlation between the execution path and certain data attributes of
the process instance at hand.

1.2 Business Process Management

Business Process Management (BPM) is the collective term to designate con-
cepts, methods and techniques to support the design, configuration, enactment,
and analysis of business processes. The foundation of BPM is the explicit rep-
resentation of a business process in some kind of model in order to define the
activities and execution constraints between them. The cradle of BPM is process
modeling, which refers to the identification and specification of business processes.
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The early foundations of Business Process Management can be attributed
to Hammer and Champy [70]. With their introduction of a radical approach to
business process reengineering, they brought process orientation to the agenda.
Furthermore, the role of information technology in reengineering business pro-
cesses was pointed out by Davenport [36]. Information systems, supported by
the plethora of information and communication technologies, support the core
business processes in most of today’s organizations. As such, any approach to
improve or redesign business processes involves the adaptation of the underlying
information systems.

The relationship between BPM and Process Mining is depicted in Figure 1.3.
It presents the BPM life cycle, subdivided in four primary phases: Design, System
Configuration, Execution and Diagnosis. As such it shows how operational busi-
ness processes are conceived, set up, enacted and analyzed. Obviously, Process
Mining is situated in the diagnosis phase of the BPM life cycle. The start of the
life cycle is the design phase. In many organizations, a priori models of business
processes are developed as they represent how the business process are assumed
or expected to be executed. Process modeling is the key technical subphase of de-
sign where informal descriptions are formalized using a specific business process
modeling language.

The next step is to translate those models into an operating process-aware in-
formation system (PAIS), represented by the second BPM life cycle phase, namely
system configuration. Ideally, a dedicated business process management system
(BPMS) is used to realize the business process. However, in practice, we often
find that a priori models serve as a basis for the configuration of a PAIS, but
the process itself is implemented by a set of rules and policies that need to be
complied with. As a result, there often exists a divergence between the process
design and the implemented system. This difference is denoted by Gap 1 in Figure
1.3.

Process enactment is the third phase in the BPM life cycle. Van der Aalst [132]
states that process enactment is the usage of the information system software,
configured in a former step to support process execution. An implemented system
will inevitably grant a certain level of freedom to its users since total control on
the actual execution is often unattainable and unwanted. However, this might lead
to situations where people use the system in a different way than envisaged by the
systems designers. Furthermore, even without large degrees of freedom, it is often
observed that people bypass certain constraints. Such deviations from prescribed
behavior by the information systems are termed workarounds. The second gap
in Figure 1.3 represents the discrepancy between what the information system
prescribes and how processes are actually carried out.

The indicated gaps in the BPM life cycle are the main drivers of the fourth
phase, namely diagnosis. When operational routines are carried out, it can be
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Figure 1.3: Process Mining within the BPM life cycle
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assumed that data about each single step in the process are recorded by the infor-
mation system in some kind of process-oriented data warehouse. As such, process
information becomes available for profound analysis. Process Mining is an entire
part of the diagnosis phase in the BPM life cycle. In contrast to Business Process
Intelligence (BPI) and Business Activity Monitoring (BAM), domains that also
fit in this phase, Process Mining is a more powerful set of methods to deal with
a thorough, bottom-up investigation. Process mining techniques do not assume
any of the critical points to be known upfront since this type of analysis will often
start with the discovery of the actual business processes from the recorded data.
The exploratory nature of Process Mining allows a relatively unbiased examina-
tion of the business process at hand. In this way, Process Mining proves to be an
ideal means for guiding process improvement and redesign approaches.

1.3 Knowledge Discovery in Databases
As well as with the field of BPM, Process Mining is tightly coupled with Knowl-
edge Discovery in Databases (KDD). In fact, Process Mining can be situated
at the intersection of both fields, as shown in Figure 1.4. Consequently, in this
section, the common grounds with the field of KDD will be outlined.

KDD BPM
Process 

Mining

Figure 1.4: Process Mining at the intersection of the fields of KDD and BPM

Fayyad et al. [52] describe the domain of Knowledge Discovery in Databases
(KDD) as follows: the non-trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data. Data mining techniques
play an important role in this process since they actually extract patterns from
data. In the last decade, the importance of KDD and data mining has grown
significantly since organizations that excel with respect to their analytical capa-
bilities create a significant competitive advantage [37]. In order to situate the
most important process mining learning tasks, two important distinctions in the
KDD-field are presented: descriptive vs. predictive learning and attribute-value
vs. relational learning.
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1.3.1 Descriptive vs. Predictive Learning

A first traditional distinction involves the two high level, primary goals of data
mining: prediction and description. Predictive data mining employs supervised
learning algorithms in order to predict a target variable that is known upfront.
Predictive data mining can be categorized into classification tasks and regression
tasks. Classification entails a discrete target variable while a continuous target
variable is used for regression. Typical descriptive data mining techniques are
clustering and association rule mining. Here, the objective is to derive patterns
that summarize the underlying relationships in data. This type of data mining
tasks is often denoted as unsupervised learning since there is no target variable
known upfront.

1.3.2 Attribute-Value vs. Relational Learning

Another important issue concerns the data itself from which patterns are to be
discovered. Within an attribute-value context, the data can be summarized in one
table, where each row represents one example and each column corresponds to one
feature. A vast majority of learning algorithms use an attribute-value representa-
tion of the data. Though these techniques are very successful and efficient, many
problems and data sets exist for which this limited expressivity is an important
drawback. Accordingly, learning frameworks have been developed that approach
this limited expressivity. Inductive logic programming (ILP) [95], also called re-
lational learning or first order learning, is a research field that studies learning
within the representations offered by logic and logic programming. Its primary
aim is to develop machine learning methods that are able to cope with structured
data in the form of entities and relationships.

1.3.3 Specificities of Process Mining Tasks

The limited expressivity of traditional attribute-value data mining algorithms
proves also problematic for application to the crucial learning task in Process Min-
ing, i.e. process discovery. Process discovery is an inherently descriptive learning
task since the goal is to discover a process model from a set of process executions
captured in the event log. As such, the hypothesis space of this learning problem
is very specific an highly complex because of the semantics that underly typical
business process modeling notations. One approach is to take advantage of tech-
niques in the domain of sequence learning. For instance, the use of Hidden Markov
Models [104] or Conditional Random Fields [80] can be expected to be useful for
process discovery. However, such models lack expressive power as well in order to
represent the underlying semantics of a process model.
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Due to the complexity of the hypothesis space and the limited or inappropriate
expressivity of existing learning techniques, different proprietary algorithms have
been developed for process discovery. However, some of them employ ideas from
traditional learning frameworks. For instance, Genetic Miner [10] takes advantage
of the ideas in the field of evolutionary computation to induce a process model
from a set of process executions. Furthermore, Goedertier et al. [63] demonstrate
that process discovery can be translated to a first order (relational) classification
problem with the use of artificial negative events.

Although the main learning task in Process Mining proves especially diffi-
cult with respect to existing learning approaches, there is of course room for the
application of regular data mining algorithms to other process mining tasks. Es-
pecially enhancement tasks are subject of these advanced analysis techniques.
Example studies are [113], [121] and [140]. In conclusion, Process Mining has lots
of common grounds with Knowledge Discovery in Databases since these domains
share a similar goal of finding interesting patterns in large amounts of data. It
was shown that process discovery is a somewhat peculiar learning task since it is
difficult to make use of traditional learning approaches, mainly because of their
lack of expressive power.

1.4 Structure and Contributions
This section outlines the main theoretical and practical contributions of this text.

1.4.1 Metrics for Quantifying the Quality of Discovered
Process Models

The first part of this thesis covers the problem of evaluating the quality of dis-
covered process models. The foundation of this research area is the study on
conformance checking by Rozinat and van der Aalst [107]. The quality of a dis-
covered process model can be judged along a multitude of different perspectives.
These perspectives can be categorized into two high-level dimensions: accuracy
and comprehensibility.

Our contribution is twofold. First of all, an evaluation study is performed on
existing evaluation metrics. With this study, the advantages and drawbacks of
currently available metrics are mapped. Secondly, based on the idea of inducing
artificial negative events into an event log [63], a novel precision metric is proposed.
This precision metric serves as the input for the application of the well-known
F-score for process discovery evaluation. This novel evaluation methodology is
considered an important step towards the definition of a more comprehensive
evaluation framework for discovered process models.

These contributions are described and published in:
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• J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A
Critical Evaluation Study of Model-Log Metrics in Process Discov-
ery. In M. zur Muehlen and J. Su, editors, Business Process Manage-
ment Workshops, 66 of Lecture Notes in Business Information Processing,
pages 158–169. Springer, 2010.

• J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens.
A robust F-measure for evaluating discovered process models. In
CIDM, pages 148–155. IEEE, 2011.

1.4.2 A Multi-Dimensional Quality Assessment of Process
Discovery Techniques

Within the field of Process Mining, there is a traditional reliance on artificial
data in order to develop learning algorithms. This focus on artificially generated
data is logical because of two reasons. Firstly, it allows for researchers to develop
algorithms that are able to mine special process constructs. Secondly, relying on
artificial data allows for a straightforward analysis of the correctness of a process
discovery technique since the behavior that is part of the artificially generated
event log is known upfront. Accordingly, the evaluation of the quality of pro-
cess discovery techniques in practice has received only modest attention. In this
respect, this work contributes to the literature with the first multi-dimensional
quality assessment of state-of-the-art process discovery techniques using eight
real-life event logs. Furthermore, the discovery techniques gauged along three key
quality criteria, namely accuracy, comprehensibility and scalability. This study is
published in:

• J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A
multi-dimensional quality assessment of state-of-the-art process
discovery algorithms using real-life event logs. Information Systems,
37(7):654–676, 2012.

1.4.3 Improving Process Discovery with Active Trace Clus-
tering

By far the most arduous challenge for process discovery algorithms consists of
tackling the problem of accurate and comprehensible knowledge discovery within
highly flexible business process environments. Event logs from such flexible sys-
tems often contain a large variety of process executions which makes the applica-
tion of Process Mining most interesting. However, simply applying existing pro-
cess discovery techniques will often yield highly incomprehensible process models
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because of their inaccuracy and complexity. With respect to resolving this prob-
lem, trace clustering is one very interesting approach since it allows to split up
an existing event log so as to facilitate the knowledge discovery process. In this
chapter, a novel trace clustering technique is described which significantly differs
from previous approaches. Above all, it starts from the observation that currently
available techniques suffer from a large divergence between the clustering bias and
the evaluation bias. By employing an active learning inspired approach, this bias
divergence is solved. In an assessment using both a controlled environment as well
as four real-life event logs, it is shown that our technique significantly outperforms
currently available trace clustering techniques from a process discovery evaluation
perspective.

Chapter 4 has been submitted for publication in:

• J. De Weerdt, S. vanden Broucke, J. Vanthienen, and B. Baesens.
Active Trace Clustering for Improved Process Discovery. Submitted
to IEEE Transactions on Knowledge and Data Engineering, 2012.

1.4.4 Real-Life Case Studies
The findings described in the previous chapters are further validated with a num-
ber of real-life case studies.

These applications are published in:

• J. De Weerdt, A. Schupp, A. Vanderloock, and B. Baesens. Pro-
cess Mining for the multi-faceted analysis of business processes
- A case study in a financial services organization. Computers in
Industry, Forthcoming.

• S. Goedertier, J. De Weerdt, D. Martens, J. Vanthienen, and
B. Baesens. Process discovery in event logs: An application in the
telecom industry. Appl. Soft Comput., 11(2):1697–1710, 2011.

• J. De Weerdt, F. Caron, J. Vanthienen, and B. Baesens. Get-
ting a Grasp on Clinical Pathway Data: An Approach Based on
Process Mining. In The Third Workshop on Data Mining for Healthcare
Management at the 16th Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Kuala Lumpur, Malaysia (forthcoming), 2012.

• J. De Weerdt, S. vanden Broucke, J. Vanthienen, and B. Bae-
sens. Leveraging process discovery with trace clustering and text
mining for intelligent analysis of incident management processes.
In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2012.



Chapter 2
Evaluating Discovered Process
Models

One of the essential issues in both the development and application of process
discovery techniques is the availability of objective metrics that are capable of
quantifying the quality of a discovered process model. The usefulness of process
discovery evaluation metrics is determined by the following requirements:

Construct validity. The extent to which a metric, being the operationalization
of a certain evaluation dimension (e.g. recall, precision, etc.), does actu-
ally measure the quality of a discovered process model in respect to the
theoretical definition of this evaluation dimension.

Reproducibility. The extent to which a process discovery evaluation metric
consistently and repeatedly presents identical (or very similar results) for
identical data and model input combinations.

Scalability. The extent to which the calculation of a metric is computationally
demanding.

Understandability. The extent to which a metric is comprehensible to both
process analysts as well as business stakeholders.

2.1 The Broader Area of Conformance Checking
In this chapter, we adopt a distinct focus on the evaluation of discovered process
models. Nonetheless, this area of research is part of a much broader domain which
is called conformance checking. Next to evaluation metrics for discovered process

15
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models, techniques proposed in this area can also be applied to existing or designed
models where they can be used to inspect the level of compliance between a
model and a log, i.e. compliance analysis. In this way, the application domain of
conformance checking techniques is much broader, with demonstrated applications
in auditing [143], business process forensics [125], performance analysis [136] and
prediction [140].

However, by far the most relevant evaluation dimension for compliance analysis
is the recall or fitness perspective. This is because one is mainly interested in find-
ing these deviations where observed behavior does not conform with prescribed
behavior in the model. In contrast, for the evaluation of discovered process mod-
els, it is always required to take a multi-perspective view. As such, this chapter
does not present a comprehensive analysis of the broader domain of conformance
checking. This is also the reason why techniques such as footprint comparisons
[135] and compliance analysis based on behavioral profiles [151] are not discussed.
It is pointed out however that the metrics presented in [151] can be used for
analysis of discovered process models. However, as with footprint-based metrics,
these techniques often suffer from their global, rather coarse-grained nature when
applied to the evaluation of discovered process models.

2.2 Main Evaluation Dimensions for Discovered
Process Models

The quality of a discovered process model can be judged along a multitude of
different perspectives. These perspectives can be categorized into two high-level
dimensions: accuracy and comprehensibility. A characterization of the quality
evaluation setting of discovered process models is presented in Figure 2.1.

Evaluation trade-offs. The accuracy evaluation of a discovered process model
should ideally consist of three perspectives: recall, precision and generalization.
Good recall is an imperative requirement for any discovered process model be-
cause it signifies how much behavior present in the event log is captured by the
model. Next to recall, models also need to be precise. Accordingly, precision met-
rics quantify whether a process model is too general with respect to the behavior
in the event log. Finally, generalization metrics punish process models that over-
specify the behavior in the event log. The key challenge for any process discovery
technique is to find the right trade-off between recall, precision and generaliza-
tion requirements. In some situations, recall will be a focal point while in another
setting, finding a right balance between a model that is precise enough while still
allowing for behavior that is not encountered in the data is required. Because
of these considerations, a well-defined evaluation framework is a key element in
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Process discovery 

Accuracy 

 Recall 
“able to replay the event log” 

Precision 
“not overfitting the event log” 

Generalization 
“not underfitting the event log” 

Comprehensibility 

 Simplicity 
“Occam’s razor” 

Structuredness 
“able to interpret the model” 

Figure 2.1: Quality dimensions for evaluating discovered process models

further developing and improving process discovery techniques themselves.
To this, it should be added that accuracy evaluation is not sufficient for decid-

ing upon the quality of a discovered process model. In a similar way as compre-
hensibility being an important issue in the data mining domain, also for process
discovery, simplicity and structuredness of a learned model are essential elements
that determine the usefulness of a learning technique. For discovered process mod-
els, we identify two components of process model comprehensibility, albeit both
are definitely correlated. Firstly, simplicity denotes the principle that “all other
things equal, a simpler explanation is better than a more complex one”. In the
field of machine learning, this principle is famously known as Occam’s razor. As
to discovered process models, this principle is mainly embodied by the number of
control-flow constructs contained in the model. Furthermore, the complexity of the
used control-flow patterns can also influence simplicity. Further, structuredness is
another component of comprehensibility. In contrast to simplicity, structuredness
is more about the characteristics and ease of interpretation of the modeling no-
tation. As such, the representation of a discovered process model is often a key
determinant of its comprehensibility.

In the remainder of this chapter, the focus will be set on the evaluation of the
accuracy of discovered process models. Hereto, an overview of currently available
metrics is presented which is followed by a discussion on how the F-measure can
contribute to the development of a proper process discovery evaluation framework.
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2.3 An Overview of Accuracy Evaluation Metrics
For the evaluation of mined process models, appropriate metrics need to be at
hand that quantify the different evaluation dimensions. It is pointed out that mul-
tiple evaluation methodologies can be identified [108]. One method is to compare
the traces in the event log and the model mined from this event log. In the remain-
der of this chapter, such a metric is called a model-log metric. Despite the fact that
model-log metrics are a highly suitable quantification approach, there exist other
ways for discovered process model evaluation. An alternative for model-log metrics
are metrics that quantify the difference between two process models [8]. This type
of metrics can be used to compare an existing process model with a discovered
model. However, it should be noted that these metrics cannot be employed for
this evaluation study because we do not have any ex-ante process models. Finally,
two totally different evaluation approaches are available that have their origins in
the field of data mining. Firstly, Rozinat et al. show in [108] how Hidden Markov
Models (HMMs) can be employed for process discovery evaluation. Furthermore,
Calders et al. [25] propose to evaluate the quality of mined process models by
making use of the minimum description length (MDL) principle. Although these
are interesting approaches, their actual applicability is currently limited and are
therefore left out of this analysis.

2.3.1 Currently Available Model-Log Metrics

As for model-log metrics, Cook and Wolf [34] are to be considered the first re-
searchers to quantify the relationship between process models and event logs.
In the context of software processes, they compare event streams from both the
model and the log by making use of different string distance metrics. Table 2.1
provides an overview of the most important model-log metrics in the process min-
ing domain. The table shows that currently available metrics evaluate discovered
process models along three important dimensions. As such, it can be seen that a
majority of evaluation metrics reflect the recall perspective. However, good recall
is not the only dimension a model should score well on. The usefulness of models
is also determined by a good balance between precision and generalization.

The recall dimension. Recall or sensitivity is the primordial accuracy evalua-
tion perspective. This dimension reflects how much behavior present in the event
log is captured by the model. For every process discovery algorithm, it is of utmost
importance to render models with good recall because representing the control-
flow behavior in an event log is the major objective of any technique. Hence, it is
definitely satisfying that a number of researchers have proposed different measures
to capture recall.
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Perspective

Name Symbol Author

Avai-
lable
in

ProM

Range
Model
input
type

R
ecall

P
recision

G
eneralization

Continuous Parsing
Measure CPM Weijters et al. [153] X [0,1] Heuristic

net X

Parsing Measure PM " X [0,1] Heuristic
net X

Completeness Greco et al. [66] [0,1] Workflow
schema X

Soundness " [0,1] Workflow
schema X

Fitness f
Rozinat and van
der Aalst [107] X [0,1] Petri net X

Behavioral
appropriateness aB " X [0,1] Petri net X

Advanced
behavioral

appropriateness
a

′

B " X [0,1] Petri net X

Structural
appropriateness aS " X [0,1] Petri net X

Advanced
structural

appropriateness
a

′

S " X [0,1] Petri net X

Partial fitness -
complete PFcomplete

Alves de Medeiros
et al. [7] X [-∞,1] Heuristic

net X

Behavioral recall rpB
Goedertier et al.

[63] [0,1] Petri net X

Behavioral
specificity snB " [0,1] Petri net X

ETC precision etcP
Muñoz-Gama et al.

[96] X [0,1] Petri net X

Average
alignment-based
trace fitness

favg
a

van der Aalst et al.
[136] X [0,1] Petri net X

One align precision a1
p Adriansyah et al. [1] X [0,1] Petri net X

Best align precision ap " X [0,1] Petri net X

Table 2.1: Overview of process mining evaluation metrics: model-log metrics
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• Fitness (f) is a metric that is obtained by trying whether each trace in
the event log can be reproduced by the generative model, in this case a
Petri net. This procedure is called sequence replay [107]. During replay, the
transitions in the Petri net will produce and consume tokens to reflect the
state transitions. Consequently, the fitness measure punishes for tokens that
must be created additionally in the marked Petri net and also for tokens
that remain after replay.

• The Continuous Parsing Measure (CPM ) was proposed by Weijters et al.
[153]. This metric is very similar to fitness (f) from [107], nonetheless CPM
is a recall metric for heuristic nets. As such, although the idea behind the
metric is similar in terms of the incorporation of missing and remaining
tokens collected during trace replay, the implementation and the actual
metric definition are slightly different.

• The Parsing Measure (PM ) was also proposed by Weijters et al. [153]. It
quantifies the percentage of traces in the log that can be replayed by the
discovered process model. It should be noted that PM is a coarse-grained
metric. A single missing arc in the discovered process model can result in
parsing failure for all traces.

• A very similar metric is completeness as defined by Greco et al. [66]. This
is the percentage of traces in the event log that are compliant with the
workflow schema or process model. Completeness always ranges between 0
and 1.

• Partial fitness - complete (PFcomplete) is a metric that was proposed by
Alves de Medeiros et al. [10] in the context of the development of the Genetic
Miner algorithm. This metric is very similar to the fitness metric (f), but
it additionally exploits trace frequencies in order to take into account the
severity of missing and remaining tokens. This metric corresponds to the
Improved Continuous Semantics fitness (ICS), which is employed in Chapter
4. Note that the partial fitness - precise (PFprecise) proposed in the same
study cannot be considered a model-log metric because it takes into account
an entire set of process models.

• Behavioral recall (rpB) as defined by Goedertier et al. [63] is the percentage
of correctly classified positive events in the event log. During sequence re-
play, it is verified whether every positive event can be parsed by the model.
Note that this measure originates from a process discovery technique that
makes use of inducing artificial negative events in order to mine control-flow
models. By verifying the parsing of positive events, recall can be quantified.
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• Average alignment-based trace fitness (favg
a ) is the most recent recall metric

in the process mining domain [136]. In contrast to a large majority of recall
metrics, the metric is based on aligning a process model and an event log [2,
3, 4] instead of replaying the log in the model. As such, the metric punishes
for alignments which require model (log) moves without a corresponding
move in the log (model).

The precision dimension. The trade-off between precision and generaliza-
tion is a major challenge in process discovery. Although models should be pre-
cise, generalizing beyond observed behavior is also a necessity. This is because
assuming that all behavior is included in an event log is a much too strong com-
pleteness assumption. So, process discovery algorithms should be able to balance
between underfitting (overly general models) and overfitting (overly precise mod-
els). Therefore, superior precision and generalization metrics should be at hand.
The following list enumerates the currently available measures.

• With the definition of soundness, Greco et al. [66] were first to define a
precision metric for evaluating a discovered process model. Soundness is
defined as the percentage of traces compliant with the process model that
have been registered in the log. Calculating soundness is not straightforward
because enumerating all possible paths in a process model is hard. Even for
smaller process models, it might be impossible to determine all the traces
that are compliant with a process model.

• In [107], Rozinat and van der Aalst defined four different appropriateness
measures. The simple behavioral appropriateness (aB) measures the amount
of possible behavior to determine a mean number of enabled transitions
during log replay. Because this metric depends on structural properties of the
process model, it is advised to use the advanced behavioral appropriateness.

• Advanced behavioral appropriateness (a′

B) allows to compare the behavior
that is specified by the model with the behavior that is actually needed to
describe the behavior in the event log. Therefore, this metric makes use of
an analysis of “follows” and “precedes” relations, both in the model and the
event log. Comparing the variability of these relations allows the definition
of a precision metric that penalizes extra behavior.

• Behavioral specificity (snB) is the percentage of correctly classified negative
events during sequence replay. As such, it is the counterpart of behavioral
recall (rpB). Artificial negative events can be generated with the technique
developed by Goedertier et al. [63]. However, the definition of the metric does
not exclude the use of natural negative events or negative events stemming
from other techniques.
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• ETC precision (etcP ) is a more recently proposed precision metric [96, 97].
This metric is based on the construction of a prefix automaton for the
event log at hand. By taking into account the number of so-called escaping
edges while mapping the behavior in the event log with the behavior in the
model, a state-of-the-art precision metric is defined. Note that this metric
is implemented as a plug-in in ProM 6.

• One align precision (a1
p) and best align precision (ap) extend the etcP metric

by first aligning the log and the model [1]. In this way, the main problem
of etcP , i.e. the fact that precision is assessed as long as the trace under
investigation remains fitting, is solved. Both metrics have been implemented
in ProM.

The generalization dimension. The third and final accuracy evaluation per-
spective is generalization. Metrics quantifying this dimension should punish pro-
cess models which are overly precise, thus not allowing unseen but very likely
behavior when taking into account the data in the event log. In the process min-
ing literature, no true generalization metrics for discovered process model have
been proposed. Nevertheless, the structural appropriateness metrics from [107]
adhere most closely to the concept of evaluating the generalization capability of
a discovered process model.

• Structural appropriateness (aS) is based on the number of different task
labels in relation to the graph size of the model. As identified by Rozinat
and van der Aalst [107], this metric’s applicability is limited because it is
only based on the graph size of the model.

• Advanced structural appropriateness (a′

S) is a generalization metric that
evaluates two specific design guidelines for expressing behavioral patterns.
This measure will punish for both alternative duplicate tasks and redundant
invisible tasks. Note that these guidelines are definitely not the only behav-
ioral preferences of control-flow models. However, a′

S is the only metric that
quantifies generalization in some way. Ideally, a process model does not con-
tain redundant invisible tasks nor alternative duplicate tasks. Accordingly,
this measure will punish for models that simply enumerate all traces in
the event log and for models that entail to much irrelevant invisible tasks.
Strictly speaking, only alternative duplicate tasks are a true indicator for
overspecialization, while irrelevant invisible tasks are an indicator of a lack
of model simplicity.

In conclusion, three important dimensions were identified along which process
models should be judged: recall, precision and generalization. Many evaluation
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metrics have already been proposed in literature with a majority of these met-
rics judging the recall of a discovered process model. Nevertheless, the trade-off
between underfitting and overfitting models is crucial as well. Hereto, currently
available precision and generalization metrics might be insufficient so as to cap-
ture these underlying evaluation dimensions comprehensively and correctly. This
issue will be investigated in the following section.

2.3.2 Elucidating Key Evaluation Metrics in Process Dis-
covery

In this section, the most important currently available process mining metrics
are illustrated so as to show how they capture the different dimensions discussed
in the previous section. Five metrics were selected: fitness, advanced behavioral
appropriateness, advanced structural appropriateness, behavioral recall and be-
havioral specificity, so that the three identified dimensions are covered by at least
one metric. Although the other metrics definitely have value, they do not add
to this analysis because most of them are very comparable to one of the metrics
selected. Furthermore, metrics like soundness and both simple appropriateness
measures suffer from different shortcomings and are therefore left out.

A simplified example to elucidate the most important metrics

The event log of this simplified example contains 50 traces “ABCDA” and 50
traces “ACBDA”. Accordingly, the best model representing the traces in the log
is model 2.2a. Table 2.2 shows that this model scores 1 on every metric and thus
can be considered excellent along all evaluation dimensions.

Metric Fitness

Adv.
Behavioral
Appropriate-

ness

Adv.
Structural

Appropriate-
ness

Behavioral
Recall

Behavioral
Specificity

Symbol f a
′

B a
′

S rpB snB

(dimension) (recall) (precision) (generalization) (recall) (precision)

Best Model 1 1 1 1 1

Flower Model 1 0.17 1 1 0

Incomplete Model 0.92 1 1 0.90 0.89

Explicit Model 1 1 0.40 1 1

Table 2.2: Model-log metrics for a simple artificial event log and four different
models

The other models in Figure 2.2 are in one way or the other erroneous. The
incomplete model does not recall all the traces in the log, the flower model allows
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(a) Best Model (b) Flower Model

(c) Incomplete Model

(d) Explicit Model

Figure 2.2: Different control-flow models for the simple event log

too much behavior and the explicit model is only a mere enumeration of the traces
in the log. We will now elucidate how different metrics are able to identify the
dimension(s) along which a mined process model misses the mark.

Fitness. Model 2.2c is not able to capture all the behavior that is present in
the event log. Thus, metrics quantifying the recall dimension should indicate this
problem. The fitness measure (f) is a particularly useful metric to do so. With 50
traces (ni) for each of the grouped traces, both the number of missing tokens (mi)
and the number of remaining tokens (ri) amounts to 1 for the second grouped
trace (“ACBDA”) and 0 for the first grouped trace (“ABCDA”). Furthermore
each of the traces requires 6 tokens to be consumed (ci) / produced (pi) in order
to be replayed. Accordingly, the fitness of the incomplete model sums up to 0.92.
Note that i is an index running over the number of different grouped traces (k),
which is two in this simplified case.

• Fitness:

f = 1
2

(
1−

∑k
i=1 nimi∑k
i=1 nici

)
+ 1

2

(
1−

∑k
i=1 niri∑k
i=1 nipi

)
(2.1)

= 1
2

(
1− 50 ∗ 0 + 50 ∗ 1

50 ∗ 6 + 50 ∗ 6

)
+ 1

2

(
1− 50 ∗ 0 + 50 ∗ 1

50 ∗ 6 + 50 ∗ 6

)
= 0.92
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The other models in figure 2.2 are able to reproduce all the behavior in the
event log. Accordingly, this is also demonstrated by the fitness measure. During
sequence replay, there are no missing tokens nor remaining tokens for any of the
other models and thus the fitness evaluates to 1. Notice that a fitness value of
0.92 for the incomplete model is an unattractively high value for a model that
only parses half of the traces correctly.

Advanced behavioral appropriateness. The flower model (2.2b) is a generic
model that allows any sequence of activities. Because it overgeneralizes, it is use-
less for any process intelligence activity. Nevertheless, the flower model captures
all the behavior in the event log perfectly, so the model is not penalized by a recall
metric. The advanced behavioral appropriateness does punish the flower model
for its overly general representation.

• Adv. behavioral appropriateness:

a
′

B = |S
l
F ∩ SmF |
2.|SmF |

+ |S
l
P ∩ SmP |
2.|SmP |

= 2
2 ∗ 12 + 2

2 ∗ 12 = 0.17 (2.2)

The advanced behavioral appropriateness for the simplified example flower
model is found by calculating the elements in the “sometimes follows” and “some-
times precedes” relations in the model (SmF and SmP ) and in the log (SlF and SlP )
[107]. The calculation for the follows relations is illustrated in figure 2.3.1 Accord-
ing to ProM, there are a total of 12 sometimes follows relations and 12 sometimes
precedes relations in the model. However, the model and the log have only 2 some-
times follows and 2 sometimes precedes relations in common. Therefore, a′

B adds
up to 0.17.

For perfectly precise models, a′

B will equal 1. This is illustrated in table 2.2
as the other three models are not overgeneralizing and their a′

B evaluates to
1 accordingly. For models 2.2a and 2.2d, the sometimes follows and sometimes
precedes relations in the model and the log are exactly the same. For model 2.2c,
the relations are not completely identical, but the model is in fact more restrictive
with respect to the relations in the log, so the generalization measure evaluates to
1. This signifies correctly that the model is not underfitting. Other metrics should
indicate the incompleteness of the model.

An important remark should be made concerning the calculation of a′

B . The
calculation involves a state space analysis which can be computationally very
demanding. Furthermore, the calculation seems approximate because a manual
analysis of the metric for the flower model results in a total of 16 sometimes
follows and sometimes precedes relations. Apparently, (A,A), (B,B), (C,C) and

1For clarity, we make abstraction of the artificial Start and End activities.



26 CHAPTER 2. EVALUATING DISCOVERED PROCESS MODELS

↙ A B C D
A AF SF SF SF

B SF AF SF SF

C SF SF AF SF

D SF SF SF AF

↙ A B C D
A SF SF SF SF

B SF SF SF SF

C SF SF SF SF

D SF SF SF SF

(a) Model relations: calculated by ProM (l) and manually (r)

↙ A B C D
A AF AF AF AF

B AF NF SF AF

C AF SF NF AF

D AF NF NF NF

(b) Log relations

Figure 2.3: Follows relations for the flower model (2.2b) and for the simplified
event log

(D,D) relations are categorized as always follows/precedes (see figure 2.3a), despite
the fact that the flower model allows more variability for these relations. As such,
a

′

B , as obtained from ProM, slightly underestimates the overgenerality of the
flower model.

Advanced structural appropriateness. Another problem in process discov-
ery are overly precise models or overfitting models. Figure 2.2d shows an explicit
model that is a mere enumeration of the traces in the log. Again, such a model is
undesired and should be punished by a generalization measure. Advanced struc-
tural appropriateness is the only currently available metric that allows to quantify
some kind of generalization, albeit this metric is not entirely in line with the con-
cept of generalization. Because model 2.2d contains six alternative duplicate tasks
(TDA) and no redundant invisible tasks (TIR), a

′

S evaluates to 0.4 (note that |T |
denotes the total number of tasks). These alternative duplicate tasks are activities
B, C and D, occurring once in each of the branches of the explicit process model.
They are alternative duplicate tasks because they never happen together in one
execution sequence.

• Structural appropriateness:

a
′

S = |T | − (|TDA|+ |TIR|)
|T |

= 10− (6 + 0)
10 = 0.40 (2.3)



2.3. An Overview of Accuracy Evaluation Metrics 27

The occurrence of alternative duplicate tasks signposts overly specific process
models. Nonetheless, this is far from the only determinant of a lack of generaliza-
tion capabilities. In the process mining literature, there are no metrics available
that are able to quantify generalization comprehensively. The problem with the
definition of a good generalization metric lies in the fact that the process model
needs to be explored in order to investigate the allowance of likely but unob-
served process instances. This exploration can quickly become computationally
intractable.

Artificially generated negative event metrics. In [63], Goedertier et al.
propose two state-of-the-art metrics originating from a process discovery tech-
nique called AGNEs (Artificially Generated Negative Events). This technique
involves the induction of negative events in the event log in order to allow the
application of advanced machine learning techniques (Inductive Logic Program-
ming) for control-flow discovery (see also [56]). The availability of both positive
and artificial negative events allows the definition of behavioral recall rpB and
behavioral specificity snB , metrics that are grounded in traditional data mining
theory. According to their definition, they are able to penalize inaccurate process
models.

The induction procedure generates artificial negative events as displayed in
Table 2.3. The induction technique will be detailed in Section 2.4. A total of 28
negative events are induced into the event log. In order to calculate the metrics,
both the positive and negative events are evaluated with a trace replay procedure.
Such a trace replay procedure will classify each positive and artificial negative
event and as such one can construct a confusion matrix. The confusion matrix for
the incomplete process model (2.2c) is shown in Table 2.4. Note that the negative
events denoted in bold face in Table 2.3 are incorrectly parsed negative events for
model 2.2c in the sense that during replay, these negative events are evaluated
as enabled considering the marking of the Petri net after executing the positive
events up till their respective positions.

Trace 1 Trace 2
Positive events A B C D A A C B D A
Artificially Bn An An An Bn Bn An An An Bn

generated Cn Dn Bn Bn Cn Cn Dn Cn Bn Cn

negative events Dn Dn Cn Dn Dn Dn Cn Dn

Table 2.3: Artificially generated negative events for the simplified event log

Behavioral recall and behavioral specificity for the incomplete model are cal-
culated according to the following formulae.
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true pos. true neg. total
pred. pos. 9 3 12
pred. neg. 1 25 26

total 10 28

Table 2.4: Confusion matrix as used for calculation of the negative event metrics
for the incomplete process model

• Behavioral recall:

rpB =
∑k
i=1 niTPi∑k

i=1 niTPi +
∑k
i=1 niFN i

(2.4)

= 50 ∗ 5 + 50 ∗ 4
(50 ∗ 5 + 50 ∗ 4) + (50 ∗ 0 + 50 ∗ 1)

= 9
10 = 0.90

• Behavioral specificity:

snB =
∑k
i=1 niTN i∑k

i=1 niTN i +
∑k
i=1 niFPi

(2.5)

= 50 ∗ 14 + 50 ∗ 11
(50 ∗ 14 + 50 ∗ 11) + (50 ∗ 0 + 50 ∗ 3)

= 25
28 = 0.89

It is pointed out that negative event-based evaluation metrics suffer from draw-
backs as well. Most importantly, these metrics rely on a trace replay procedure.
Because it is computationally intractable to make use of backtracking in order
to explore the full state space of a process model, it is required to make use of
heuristics. In case there exist process instances that do not fit the process model,
trace replay often makes use of the concept of force firing. Force firing entails the
firing of a transition in a Petri net that is not enabled. In some situations, force
firing creates unwanted side-effects which will influence the classification of arti-
ficial negative events. In this way, an unwanted correlation might exist between
recall and precision.
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Conclusion. From this simplified model, it can be concluded that within pro-
cess discovery research, different evaluation dimensions are covered by existing
model-log metrics. With the purpose of tracking down more shortcomings of avail-
able process discovery evaluation metrics, a more extended example is used in the
next section.

Further insights using an extended Driver’s License example

We apply the evaluation metrics to a more extended example by using a modified
version of a Driver’s License event log (from [7]). This event log and the according
models contain more complex control-flow constructs such as a loop and non-
free choice constructs. As such, this experiment will allow us to verify whether
the available metrics can distinguish between worse and better models in a more
complex setting. Figure 2.4 and Table 2.5 show the results of three state-of-the-art
process discovery techniques, the reference process model and a flower model. By
examining these results, some further elements in the analysis of existing process
discovery metrics can be highlighted.

Metric Fitness

Adv.
Behavioral
Appropriate-

ness

Adv.
Structural

Appropriate-
ness

Behavioral
Recall

Behavioral
Specificity

Symbol f a
′

B a
′

S rpB snB

(dimension) (recall) (precision) (generalization) (recall) (precision)

Reference Model 1 0.927 1 1 0.985

Heuristics Model 1 0.874 1 1 0.985

Alpha Model 0.921 1 1 0.917 0.983

AGNEs Model 1 0.906 0.846 1 0.985

Flower Model 1 0.500 1 1 0

Table 2.5: Model-log metrics for the extended Driver’s License example

First of all, it can be seen that the fitness metric (f) reveals that every tech-
nique, except for the α-algorithm [131], discovers models with perfect recall. This
can also be concluded from the behavioral recall metric (rpB). Although both met-
rics seem to measure the same dimension, an important remark should be made.
The interpretation of the fitness measure requires some attention: although it ac-
counts for recall as it punishes for the number of missing tokens that had to be
created, it also punishes for the number of tokens that remain in the Petri net
after log replay. The latter can be considered extra behavior. Therefore, the fit-
ness metric also has a precision semantics attached to it. As mentioned previously,
metrics desirably measure only one dimension in order to remain comprehensible.



30 CHAPTER 2. EVALUATING DISCOVERED PROCESS MODELS

(a
)
R
ef
er
en
ce

M
od

el

(b
)
H
eu
ri
st
ic
s
M
in
er

re
su
lt

Fi
gu

re
2.
4:

D
iff
er
en
t
co
nt
ro
l-fl

ow
m
od

el
s
fo
r
th
e
D
riv

er
’s

Li
ce
ns
e
ev
en
t
lo
g



2.3. An Overview of Accuracy Evaluation Metrics 31

(c
)
A
lp
ha

re
su
lt

(d
)
A
G
N
E
s
re
su
lt

Fi
gu

re
2.
4:

D
iff
er
en
t
co
nt
ro
l-fl

ow
m
od

el
s
fo
r
th
e
D
riv

er
’s

Li
ce
ns
e
ev
en
t
lo
g



32 CHAPTER 2. EVALUATING DISCOVERED PROCESS MODELS

Secondly, some observations concerning the advanced behavioral appropriate-
ness (a′

B) are discussed. As for the flower model in the simplified example, the
state space analysis for calculating this metric was calculated swiftly. However,
for this Driver’s License example, the more or less exhaustive simulation of all
the behavior in the model was unable to be completed within an acceptable time
period. It can be expected that for even more complex data sets, for instance
originating from real-life process environments, the calculation of the metric will
be computationally infeasible.

Finally, we notice that it is not obvious which model is to be preferred. Models
score differently along distinct dimensions, but there are no rules that define how
these dimensions should be put together. Are there dimensions that are more
important than others? How can this be included in the analysis phase? How
should differences along one and multiple dimensions be assessed? We think that
these questions bring about the necessity for a more rigorous and comprehensive
evaluation framework for discovered process models.

2.3.3 Observations
Both the explicit illustration of a number of key process discovery evaluation
metrics with a simplified example as well as an analysis based on the Driver’s
License log clarified a number of strengths and weaknesses of currently available
metrics. The major shortcomings can be summarized as follows:

• Metrics should be one-dimensional. Fitness (f) is an example metric that
does not fulfil this requirement. The problem with multi-dimensional metrics
is that, unless the different components are clearly identifiable, such metrics
will quickly render incomprehensible.

• Many of the currently available precision measures suffer from computa-
tional inefficiency. For instance, the advanced behavioral appropriateness
metric requires an exhaustive simulation of the mined process model. This
state space analysis procedure is only approximate and this causes difficulties
with respect to analyzing discovered process models. Even though concep-
tually proficient, the imprecise and computationally demanding calculation
of the metric brings about the necessity of new precision and generalization
measures. The development of better precision metrics is required so as to
be able to capture the crucial trade-off between precision and generalization.

• The lack of good quantifiers of the generalization dimension is an important
drawback for process discovery evaluation. Advanced structural appropriate-
ness was identified as a metric that captures the lack of the generalization
capability of a discovered process model. Nonetheless, this metric is far from
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perfect because its original definition strongly focuses on structural aspects
of the process model, which only partly determine generalization. Note that
generalization metrics are subject of ongoing research. For instance in [136],
the authors propose a new approach for quantifying generalization. However,
this metric is yet to be implemented.

• Process discovery metrics developed in the light of machine learning theory
are definitely of added value. Behavioral recall and behavioral specificity are
valuable measures, but their integration with the ProM-framework should
allow researchers to exploit these state-of-the-art recall and specificity met-
rics.

Finally, this analysis demonstrates that a more rigorous and comprehensive
evaluation framework for process discovery is definitely needed. Although this
need has been formulated previously [111], such a framework is still missing. The
insights provided can be considered as a valuable impetus hereto. It can be con-
cluded that in any process discovery analysis, combining different metrics is indis-
pensable, as metrics preferably measure only one aspect of a mined process model
and models will always have to be judged along multiple dimensions. Therefore,
the application of the F-measure for process discovery evaluation is proposed in
the next section.

2.4 Towards an Evaluation Framework with the
Application of the F-score

Within the research domain of process mining, a lot of attention has been be-
stowed on process discovery [10, 53, 63, 67, 131, 153, 154, 155]). Many of these
algorithms are able to deal with specific problems related to control-flow discovery:
parallelism, loops, duplicate tasks, noise, and non-local dependencies. However,
the effort spent in developing process discovery algorithms is not counterbalanced
by the effort put into the evaluation of the discovered process models. As such, it
was identified in the previous section that a well-defined evaluation framework for
process discovery is still missing. The lack of an evaluation framework is primar-
ily due to the difficulty of combining metrics that capture different dimensions
along which process models should be evaluated. More specifically, process mod-
els cannot be evaluated on recall or sensitivity only. Although this dimension is
of utmost importance, other requirements for discovered process models such as
precision and generalization beyond observed behavior should be included in any
process discovery evaluation analysis.

In this section, an evaluation approach is described which is based upon arti-
ficially generated negative events. This approach stipulates the application of the
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well-known F-measure [147] to discovered process models. With the purpose of
applying the F-score, a novel precision metric is proposed in Section 2.4.2 which
is similar to the behavioral specificity metric described earlier. With the avail-
ability of recall and precision metrics, the new evaluation approach is proposed in
Section 2.4.3. The approach is illustrated with a small scale example in Section
2.4.4. Note also that the next chapter will elaborate on the empirical validation
of the proposed F-score evaluation methodology with a more extensive evaluation
environment for process discovery algorithms.

2.4.1 The Induction of Artificial Negative Events
Event logs rarely contain information about transitions that are not allowed to
take place. This makes process discovery an inherently unsupervised learning
problem. To make a tradeoff between overly general and overly precise process
models, learners make additional assumptions about the given event sequences.
Such assumptions are part of the inductive bias of a learner. For instance, pro-
cess discovery algorithms might include the assumption that event logs portray
the complete behavior of the underlying process and implicitly use this strong
completeness assumption to make a tradeoff between overly general and overly
precise process models. Such a strong completeness assumption is often unwanted
because event logs will typically not portray all possible behavior in a certain
business process.

In [63], Goedertier et al. describe a technique to artificially generate negative
events based on an event log containing only positive events. The induction proce-
dure is the foundation for their process discovery technique called AGNEs Miner.
In this section, we will make use of the same principle for generating negative
events in order to build our evaluation approach.

Principle

The technique of inducing negative events is relatively straightforward. Negative
events record that at a given position in an event sequence, a particular event
cannot occur. At each position in each event trace in the log, it is examined which
negative events can be recorded for this position. In a first step, the technique
stipulates that the event log is made more compact, by grouping process traces
that have identical sequences into grouped process instances. By grouping similar
process instances, searching for similar behavior in the event log can be performed
more efficiently.

In the second step, all negative events are induced for each grouped process
instance. Negative examples can be introduced in grouped process instances by
checking at any given positive event whether any other activity type in the event
log could occur as an event at this position. For each of these events, it is tested
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whether there exists a similar sequence in the event log in which at that point the
event under consideration occurs. If such an event does not occur in any other
sequence, such behavior is not present in the event log. Consequently, a negative
event can be added at this position in the event sequence. On the other hand, if
a similar sequence is found with this behavior, no negative event is generated.

Example

In order to elucidate the principle of generating artificial negative events more
clearly, the injection procedure is illustrated with a small example. Take the event
log in Figure 2.5, which is perfectly represented by the process model in Figure
2.6. When we look for instance at the third positive event (activity c) in trace
pi1, it can be seen that five artificial negative events are induced at this position.
Because activity d appears at the same position of event cp in another similar
trace in the event log, namely trace pi2, activity d cannot be added as a negative
event in trace pi1 at the position of event cp. In contrary, all the other activity
types in this event log can be added as artificial negative events because there are
no similar traces in the event log where these activities appear as a positive event
at the position of event cp in trace pi1. In this way, artificial negative events are
added to the event log for each positive event in a log trace (see Table 2.6).

pi1 abcdeg
pi2 abdceg
pi3 abcdefg
pi4 abdcefg

Figure 2.5: Example event log

2.4.2 A Precision Metric Based on Artificially Generated
Negative Events

The availability of an event log supplemented with artificial negative events allows
for the construction of a confusion matrix for a mined control-flow model. By

a b

c

d

e

f

g

Figure 2.6: Process Model for the event log in Figure 2.5
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pi1 ap bp cp dp ep gp

bn an an an an an

cn cn bn bn bn bn

dn dn en cn cn cn

en en fn en dn dn

fn fn gn fn fn en

gn gn gn gn fn

pi2 ap bp dp cp ep gp

bn an an an an an

cn cn bn bn bn bn

dn dn en dn cn cn

en en fn en dn dn

fn fn gn fn fn en

gn gn gn gn fn

pi3 ap bp cp dp ep fp gp

bn an an an an an an

cn cn bn bn bn bn bn

dn dn en cn cn cn cn

en en fn en dn dn dn

fn fn gn fn fn en en

gn gn gn gn gn fn

pi4 ap bp dp cp ep fp gp

bn an an an an an an

cn cn bn bn bn bn bn

dn dn en dn cn cn cn

en en fn en dn dn dn

fn fn gn fn fn en en

gn gn gn gn gn fn

Table 2.6: Negative events for the traces in the example event log
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replaying the event log in the model, each and every positive and artificial negative
event can be evaluated. In this way, a matrix as in Table 2.7 can be constructed
denoting whether the positive and negative events are predicted correctly or not by
the model. The availability of such a confusion matrix is a substantial advance of
the evaluation method based on the artificial negative event generation proposed
by Goedertier et al. [63].

Actual pos. Actual neg.

Pred. pos. True Pos. (TP) False Pos. (FP)

Pred. neg. False Neg. (FN ) True Neg. (TN )

Table 2.7: Confusion matrix

Drawing upon this confusion matrix, a novel precision metric is defined. By
evaluating the true positive events (TP) in respect to all predicted positive events
(TP + FP), the precision dimension of a mined process model can be assessed.
Therefore we define Behavioral Precision pB , ranging between 0 and 1, as in
Equation 2.6.

pB =
∑k
i=1 niTPi∑k

i=1 niTPi +
∑k
i=1 niFPi

(2.6)

Note that k is the total number of different grouped process instances in the
event log. Index i runs over all different grouped process instances. ni is the
number of instances within one group of similar process instances. TP denotes
the correctly predicted positive events, while FP denotes the incorrectly predicted
artificial negative events.

This precision metric, which fully coincides with the standard definition of
precision within the field of data mining, has the advantage of requiring less com-
putational resources in respect to other precision metrics mentioned earlier (i.e. it
does not require a full state space exploration). Furthermore, having now both a
recall metric and a precision metric based on artificially generated negative events,
we are able to define an F-measure for evaluating discovered process models, as
discussed in the next section.

2.4.3 The F-score for Process Discovery Evaluation
Originally, the F-measure (Equation 3.1) was proposed by van Rijsbergen [147]
in the context of information retrieval. In the fields of machine learning and data
mining [123], the F-measure is often used as a standard balance between precision
and recall for evaluating point classifiers.
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Fβ = (1 + β)2 × precision × recall
β2 × precision + recall (2.7)

In fact, the F-measure can be seen as a point classifier alternative of the
AUC (Area Under the ROC-curve) [51], a popular evaluation metric for rank
classifiers. AUC cannot be used as an evaluation approach for process discovery
because a discovered process model can only be seen as a point classifier for
each individual event in the event log. In particular, a discovered process model
determines whether a positive or artificial negative event is correctly classified or
not, it does not assign a probability to this classification.

The β-parameter is a weight factor which determines the relative importance
of precision and recall. With β equal to 1, precision and recall are weighted evenly.
This results in the F1-score. However, for process discovery in real-life environ-
ments, it might be interesting to change the weight factor in favor of recall. As
such, in the next chapter, we will also report on the F2-score, weighing recall twice
as much as precision. This is because especially for real-life event logs, recall tends
to be more important than precision.

In order to take into account the typicalities of the process discovery evaluation
setting, we define the Behavioral F-measure F1 rp

B
,pB

for a discovered process
model in Equation 2.8, entirely founded upon the formula in Equation 3.1.

F1 rp
B
,pB

= 2× pB × rpB
pB + rpB

, with (2.8)

pB =
∑k
i=1 niTPi∑k

i=1 niTPi +
∑k
i=1 niFPi

rpB =
∑k
i=1 niTPi∑k

i=1 niTPi +
∑k
i=1 niFN i

Note that the meaning of the symbols remain exactly the same as in Equation
2.6, with FN denoting the falsely predicted positive events.

The key advantage of this novel evaluation approach consists of a transparent
and robust method to combine two important evaluation dimensions for discov-
ered process models: recall and precision. More precisely, our approach allows for
careful comparison of different process models obtained from the same event log.
As such, benchmarking state-of-the-art process discovery techniques can be car-
ried out in an understandable and effective way. What is more, we think that this
novel evaluation approach is an important step towards a well-defined evaluation
framework for process discovery.
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Also, the availability of a new precision metric, quantifying whether a process
model does not underfit the data, is of major importance. The Behavioral Pre-
cision (pB) is theoretically sound and can be calculated swiftly. In this way, this
metric is a useful alternative for the currently available precision metrics, that
suffer from computational inefficiencies.

In order to empirically validate our proposed evaluation approach, we will
demonstrate the application of the Behavioral F-measure (F1 rp

B
,pB

) within a
benchmarking experiment based on 20 artificial event logs. This analysis is pre-
sented in the next section.

2.4.4 An Illustrative Example
Figure 2.7 illustrates the novel evaluation approach with a simple example. For
an event log 2.7a and three corresponding control-flow models 2.7b 2.7c 2.7d,
two evaluation approaches are compared. Approach A is our novel evaluation ap-
proach based on artificially generated negative events enabling the computation of
F1 rp

B
,pB

. The other evaluation approach consists in applying the same F-measure
to two other popular process mining metrics, namely fitness and advanced behav-
ioral appropriateness (Rozinat et al. [107]). As can be seen from Table 2.7e, both
approaches correctly evaluate the best process model and punish the imprecise
flower model and the incomplete model 2.7d. However, there exist some small
differences between the two approaches. This discrepancy is mainly due to the
differences in how precision is quantified. pB depends on replaying the event log
in the discovered Petri net model, while a′

B only takes into account the ratios of
sometimes follows and sometimes precedes relations in the model and in the event
log.

2.5 Discussion

2.5.1 Completeness Assumption
As explained earlier, the proposed evaluation approach is entirely based on the
principle of inducing artificial negative events into an event log. In order to induce
these negative events, we make use of the assumption that an event log portrays
more or less the complete behavior of the underlying process. It is acknowledged
that in some real-life situations, it cannot be expected that the complete behavior
of the underlying process is captured in an event log. Accordingly, this strong com-
pleteness assumption might put a strain on the applicability of artificial negative
event-based evaluation metrics.

However, it is argued that the completeness assumption is an inherent problem
for many unsupervised data mining tasks. When building a model based on a



40 CHAPTER 2. EVALUATING DISCOVERED PROCESS MODELS

pi1 abcdeg
pi2 abdceg
pi3 abcdefg
pi4 abdcefg

(a) Event log

a

b
c

d

e
f

g

(b) An overly general
model

a b

c

d

e

f

g

(c) An accurate and precise model

a b c d e f g

(d) An incomplete model

Evaluation approach A Evaluation approach B
rpB pB F1 rp

B
,pB

f a
′

B F1 f,a′
B

Best Model 1 1 1 1 1 1
Flower Model 1 0, 15 0, 26 1 0, 10 0, 18
Incomplete Model 0, 85 0, 76 0, 80 0, 87 1 0, 93

(e) Evaluation results

Figure 2.7: Illustration of the novel evaluation approach
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certain data set, it is always complicated to induce models that generalize towards
unseen behavior that is not represented in the data. This is also the case for process
discovery and the according definition of process discovery evaluation metrics.

Secondly, completeness of an event log is strongly determined by the size of
the log and by the time frame of the event log under consideration. Furthermore,
the type of process is a very important determinant on whether one can assume
that the behavior in an event log is to some extent complete. In many situations,
only domain experts will be able to assess to what extent a certain event log is
incomplete.

Nevertheless, we recognize that in highly flexible environments, it might be the
case that an event log does not capture all possible behavior of a deployed pro-
cess. However, we think that our novel evaluation approach is definitely of added
value for the evaluation of discovered process models. Of course, when applying
our approach, one should always bare in mind the consequences of the complete-
ness assumption. When you are investigating highly unstructured processes, it
might be necessary to also include other evaluation techniques. Furthermore, it is
pointed out that the definition of the F-score allows to weight recall and precision
differently. By varying the weight parameter β, it is possible to attach less weight
to precision. By doing so, the impact of the completeness assumption is reduced
because only the precision component of the F-score is influenced because of the
inclusion of falsely predicted negative events which could be falsely introduced in
the event log.

Finally, the ideal solution for adapting the F-score evaluation methodology
to the problem of a strong completeness assumption is an improvement of the
induction procedure of the artificial negative events. In [148], a first step towards
improving artificial negative event generation was proposed. As such, it might be-
come possible to alleviate the completeness issue which would make our evaluation
approach even more generally applicable.

2.5.2 Root Cause Analysis

Identification of the root causes of control-flow inaccuracies of a certain discov-
ered process model is an issue that is not addressed in this chapter. Because the
proposed evaluation method is not yet implemented as a ProM plug-in, we cannot
provide a means for root cause analysis. However, it should be possible to devise
a plug-in based on the novel evaluation approach that visually represents flaws in
the process model under investigation. For the fitness and advanced behavioral
appropriateness, there exists a plug-in in the ProM framework, called Confor-
mance Checker, that allows to some extent the identification of root causes of
control-flow inaccuracies. However, in the latest version of ProM, i.e. ProM 6, no
conformance checking plug-ins are available that visually indicate the root causes



42 CHAPTER 2. EVALUATING DISCOVERED PROCESS MODELS

of inaccurate discovered process models.

2.5.3 Overfitting: Generalization Dimension
As explained in Section 2.3, precision gauges whether a model underfits the data.
However, the proposed evaluation method does not allow for the verification to
what extent a process model overfits the data. Our evaluation approach is not
able to detect whether a process model overfits the data by for example just enu-
merating all the traces in the event log. Rozinat et al. [107] defined the advanced
structural appropriateness as a metric to determine whether a process model over-
fits the data. This metric takes into account structural properties of the mined
process models in terms of alternative duplicate tasks and redundant invisible
tasks. Currently, quantifying the generalization dimension based upon artificially
generated negative events seems unfeasible. This causes our approach to be not
fully applicable yet as a general evaluation framework for process discovery. Note
that generalization metrics are subject of ongoing research. For instance in [136],
the authors propose a new approach for quantifying generalization. However, this
metric is yet to be implemented. In future work, we will investigate how we can
quantify overfitting process models and thus further improve upon the important
problem of finding a balance between generalization and precision.



Chapter 3
A Multi-Dimensional Quality
Assessment of Process Discovery
Techniques

Process mining techniques are specifically designed to provide insights into the
real operational semantics of business processes. The distinctive, analytical focus
on business processes makes process mining a research field on its own. The dif-
ference between process mining and traditional business intelligence (BI) tools is
eminent. The added value of process mining over BI and other OLAP reporting
tools lies in the depth of the analysis as BI tools mainly focus on the display
of Key Performance Indicators (KPIs). The major drawback of classical BI tools
is that they lack the ability to provide thorough insight into the root causes of
process inefficiency and erroneousness.

Process discovery is one such technique which provides a process analyst with
this profound level of insight into the actual way of working. The graphical vi-
sualization offered by process discovery techniques is definitely one of the major
driving forces of the success of process mining in practice. However, knowledge
discovery in real-life event logs faces the crucial requirement to extract useful,
interpretable information, preferably in line with expectations of domain special-
ists. Research with respect to the application of process discovery techniques in
real-life settings has indicated that the currently available techniques often suffer
from incomprehensibility.

In this chapter, the quality of existing process discovery techniques is thor-
oughly assessed. As such, the major contributions are:

43
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• a comprehensive overview of process discovery techniques

• the first comparative benchmarking study of process discovery techniques
using multiple real-life event logs

• a multi-dimensional evaluation study focussing on both accuracy and com-
prehensibility

• demonstration of the F-score as an evaluation approach for combining ac-
curacy dimensions

The chapter is organized as follows. The first section provides a comprehensive
literature review of process discovery techniques. Section 3.3 presents a discussion
on how to evaluate process discovery techniques with respect to accuracy. Fur-
thermore, in Section 3.4, we outline a number of process model complexity metrics
in order to assess the comprehensibility of discovered process models. Then, Sec-
tion 3.5 presents the empirical setup of the benchmarking experiment before the
results are discussed in Section 3.6. The last sections are devoted to a discussion
on the aspect of representational bias and conclusions.

3.1 Discussion of Process Discovery Techniques
In the past decade and a half, many process discovery techniques have been pro-
posed (see Table 3.1). Algorithmic, machine learning as well as probabilistic ap-
proaches have been conceived. One of the major drivers for process miners is the
development of the ProM framework [141]. This supporting framework developed
at TU/Eindhoven allows the development of all kind of process intelligence tech-
niques. One of its most important features is the underlying file format for process
event logs, formerly known as MXML, but recently improved to XES (eXtensible
Event Stream).

3.1.1 Early Approaches
The foundational approaches to process discovery were formulated by Agrawal
[5], Cook and Wolf [33], and Datta [35]. Cook and Wolf proposed three differ-
ent approaches in the context of software engineering. Their RNet, Ktail and
Markov methods approached the discovery of models from event-based data from
a statistical, algorithmic and probabilistic viewpoint. Nonetheless, the idea of ap-
plying process discovery in the field of workflow management systems stems from
Agrawal et al. and Datta.

Manilla and Meek [88] describe a technique to learn two-component mixture
models of global partial orders that provide an understandable, global view of a set
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of sequences. As a result, the technique cannot cope with concurrency and many
other typical problems in the field of process mining. Another process mining tool
was developed by Schimm [114, 115]. His Process Miner is entirely based on data
mining techniques and is able to discover complete and minimal process schemes
from event-based data. Yet, Process Miner cannot be qualified as robust, which
is an important requirement in order to apply techniques in real-life settings.

3.1.2 The α-algorithm and Its Successors

The α-algorithm can be considered as one of the most substantial techniques in
the process mining field. Van der Aalst et al. [131] prove that it can learn an
important class of workflow nets, called structured workflow nets, from complete
event logs. The α-algorithm assumes event logs to be complete with respect to all
allowable binary sequences and assumes that the event log does not contain any
noise. Therefore, the α-algorithm is sensitive to noise and incompleteness of event
logs. Moreover, the original α-algorithm was incapable of discovering short loops
or non-local, non-free choice constructs. Alves de Medeiros et al. [9] improved
the original α-algorithm to mine short loops and named it α+. This algorithm is
available in ProM and therefore, we included this algorithm in Table 3.1.

More techniques have been proposed to improve the original α-algorithm. Wen
et al. [154] devised the α++-algorithm that is able to detect non-free choice con-
structs. Furthermore, Wen et al. [155] have also proposed to take advantage of
both start and completed event types in order to detect concurrency, which is
implemented in their β-algorithm.

In order to remedy the robustness problem of the α-algorithms, Weijters et al.
[153] developed HeuristicsMiner. In particular, HeuristicsMiner extends the formal
α-algorithm in that it applies frequency information with regard to three types of
relationships between activities in an event log: direct dependency, concurrency
and not-directly-connectedness. According to its specification, HeuristicsMiner
can discover short loops and non-local dependencies, but lacks the capability of
detecting duplicate activities. As a result of the threshold parameter setting, the
heuristic algorithm is prone to be noise resilient and therefore can be expected to
be robust in a real-life context.

In contrast to the theoretically grounded α-algorithm, Günther and van der
Aalst [67] propose Fuzzy Miner, an adaptive simplification and visualization tech-
nique based on significance and correlation measures to visualize the behavior in
event logs at various levels of abstraction. The main contribution of Fuzzy Miner
is that it can also be applied to less structured, or unstructured processes of which
the event logs cannot easily be summarized in concise, structured process models.
Although this approach is an extraordinary data exploration technique, it suf-
fers from a drawback in the sense that a Fuzzy model cannot be translated to a
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formal Petri net which severely limits a comparative evaluation to other process
discovery techniques.

3.1.3 Techniques Originating from Machine Learning The-
ory

Many authors have proposed to use machine learning techniques in the context of
control-flow discovery. Several authors have used classification techniques for the
purpose of process discovery. For instance, Maruster et al. [91] were among the
first to investigate the use of rule-induction to predict dependency relationships
between activities from a corpus of reference logs that portray various levels of
noise and imbalance. To this end, the authors use a propositional rule induction
technique, i.e. the uni-relational classification learner RIPPER, on a table of direct
metrics for each process task in relation to each other process task, which is
generated in a pre-processing step.

Ferreira and Ferreira [56] apply a combination of ILP learning and partial-
order planning techniques to process mining. By iteratively combining planning
and learning, a process model is discovered that is represented in terms of the case
data preconditions and effects of its activities. In addition to this novel process
mining technique, the contribution of this work is in the truly integrated BPM
life cycle of process generation, execution, re-planning and learning. Lamma et
al. [81] also describe the use of ILP to process mining. The authors assume the
presence of negative sequences to guide the search algorithm. Unlike the approach
of Ferreira and Ferreira, who use partial-order planning to present the user with
an execution plan to accept or reject (a negative example), this approach does
not provide an immediate answer to the origin of the negative events.

Due to the limitations of local search, early approaches to process discovery,
were generally not able to discover non-trivial constructs like non-free choice,
invisible tasks and duplicate tasks. The main motivation of Alves de Medeiros
et al. [10] to apply a genetic algorithm for process discovery is to benefit from
global search. The fitness function of this genetic algorithm incorporates both a
recall and a precision measure that drives the genetic algorithm towards suitable
models. Genetic Miner defines its search space in terms of causal matrices. These
matrices express task dependencies only, yet they are closely related to Petri nets.
Because of the global search property, Genetic Miner is capable of detecting non-
local patterns in the event log. Moreover, the algorithm ensures a fair robustness
because of the arc post-pruning step.

AGNEsMiner [63], proposed by Goedertier et al., addresses the difficulties of
process mining by representing the discovery task as first-order classification learn-
ing on event logs, supplemented with artificially generated negative events. Like
Genetic Miner, the AGNEs algorithm is capable of constructing Petri net mod-
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els from event logs and has been implemented as a mining plugin in the ProM
Framework. Given an event log supplemented with artificially generated nega-
tive events, it becomes possible to learn the conditions that discriminate between
the occurrence of either a positive or a negative event. As such, process mining is
represented as a classification learning problem. The AGNEs process discovery al-
gorithm is designed to learn the discriminating conditions that determine whether
an event can take place or not, given a history of events of other activities. To
induce this knowledge, AGNEsMiner makes use of an existing multi-relational
classification learner called Tilde [13].

Another approach based on machine learning theory was proposed by Greco et
al. [66]. This technique, called DWS mining, can be described as a hierarchical and
iterative procedure that refines the process model in each step, based on clustering
of patterns sharing similar behavior. This approach guarantees full compliance
with the event log and increasingly improves the soundness of the process model,
where soundness can be seen as a quantification of precision. In [65], Greco et al.
extend traditional discovery methods by putting forward an abstraction method
that aims to produce a taxonomy of process models. As such, the behavior in the
event log can be analyzed at different levels of detail. AWS mining consists of both
mining and abstraction algorithms that are assembled in order to build a tree-like
schema. This schema consists of non-leaf nodes with an abstract process model
that generalizes all the different process models in the corresponding subtree.

The idea to represent mined process models through different views at differ-
ent levels of abstraction is also the driver behind FSM Miner/Petrify, a process
discovery technique proposed by van der Aalst et al. [128, 139]. In search of find-
ing a balanced trade-off between precise and general process models, the authors
propose a two-step approach. Firstly, a transition system should be constructed
from the traces in an event log. In a second step, this transition system is synthe-
sized by means of theory of regions. In this way, a Petri net can be constructed.
Due to the more direct relation between the log and the transition system, gener-
alization is more controllable. An important disadvantage of this approach is that
it cannot deal with noise. A similar technique is described by Carmona et al. [27].
This algorithm, called Genet, also enables the construction of a Petri net from a
transition system.

3.1.4 Other Process Discovery Approaches

The last part of this section enumerates some other process discovery techniques
that were not described previously.

Herbst and Karagiannis [71] describe the working of the splitpar algorithm that
is part of the InWoLvE framework for process analysis. This algorithm derives
a so-called stochastic activity graph and converts it into a structured process
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model. The splitpar algorithm is capable of detecting duplicate activities, but
it is not able to discover non-local dependencies. Furthermore, Gaaloul et al.
[60] propose a process discovery algorithm they called Workflow Miner. In fact,
this technique enables the discovery of advanced structural workflow patterns
after modeling the elementary dependencies in the event log in an intermediary
graphical representation.

Furthermore, van Dongen and van der Aalst showed in [146] how process
discovery can be approached by aggregating individual process instance models
into a Petri net. For this approach, they rely on the use of Event-driven Process
Chains (EPCs) as an intermediate step in order to derive an executable process
model.

Another approach to process mining is the Enhanced WFMiner (Folino et al.
[57]). This algorithmic technique is described as being capable of dealing with
a large number of important process discovery challenges such as noise, dupli-
cate tasks and non-free choice. Moreover, Ferreira and Gillblad [53] address the
problem of unlabeled event logs, which are logs without a case identifier for each
process execution. By applying an Expectation-Maximization procedure, their
technique allows to discover process models from an unlabeled stream of events.

Process discovery can also be formulated as a mathematical optimization prob-
lem. For instance, ILP Miner [145] entails the application of Integer Linear Pro-
gramming (ILP) to automatically discover Petri nets. This technique, formerly
known as Parikh language-based region miner, is based on the well-known theory
of regions and since this approach allows for parallelization and is shown to be
independent of the number of events registered in the event log, the technique can
be expected to be useful in practice. In a similar way, Solé and Carmona [119]
recently proposed the use of Satisfiability Modulo Theories (SMT) for process
discovery. In contrast to [145], these authors do not make use of ILP but instead
solve the problem in the boolean domain by means of an SMT-solver. Note that
the latter technique discovers C-nets instead of Petri nets.

3.2 Evaluation Framework

The assessment of process discovery techniques centers on accuracy and compre-
hensibility, as depicted in Figure 3.1. The former refers to how well a process
discovery technique is able to render process models that capture the behavior in
an event log soundly, hereby balancing between overly general or overly precise
models. In contrast, comprehensibility entails the assessment of the understand-
ability of the discovered process models in terms of their complexity and ease of
interpretation.

In the following two sections, it is outlined how both general evaluation dimen-
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Process discovery 

Accuracy 

 Recall 
“able to replay the event log” 

Precision 
“not overfitting the event log” 

Generalization 
“not underfitting the event log” 

Comprehensibility 

 Simplicity 
“Occam’s razor” 

Structuredness 
“able to interpret the model” 

Figure 3.1: Overview of the quality dimensions of a discovered process model
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sions are quantified in order to assess the quality of process discovery techniques.
It should be noted that with respect to accuracy, no performing generalization
metric is currently available for process discovery evaluation, especially in case of
real-life event logs. Accordingly, accuracy evaluation will only take into account
recall and precision perspectives.

3.3 Evaluating Accuracy

Since the purpose of this chapter is a multi-dimensional quality assessment of
process discovery techniques, appropriate metrics need to be at hand in order to
conduct this evaluation. In the previous chapter, an overview of how discovered
process models can be judged with respect to their accuracy was presented. As
mentioned earlier, accuracy in itself is multi-dimensional, which brings about a
multitude of available metrics. Furthermore, in order to compare different process
discovery techniques, it is indispensable to have some kind of methodology to
combine accuracy evaluation dimensions. In this section, it is argued that the
F-score [147] can be employed in order to combine different types of accuracy
metrics.

3.3.1 Accuracy Dimensions

The accuracy of a process model is a somewhat abstruse concept because it can
only be assessed taking into account different perspectives. As such, we iden-
tify three dimensions that are important: recall, precision, and generalization. It
should be noted that process discovery techniques should be able to meet multiple
criteria at the same time. For instance, techniques that only strive for maximizing
recall, tend to provide either overfitting models that overspecify the data in the
event log or underfitting models that allow much more behavior than actually
desired. Therefore, the key challenge for any process discovery technique is to dis-
cern process models that are able to find a balance between multiple dimensions
in order to provide useful models.

As described in the previous chapter, a variety of model-log metrics are avail-
able for quantifying discovered process model accuracy. Table 3.2 provides an
overview of the metrics that are currently available for the accuracy assessment
of process discovery techniques. In the empirical assessment, multiple of these
metrics will be employed so as to counterbalance the problem that many pro-
cess discovery evaluation metrics suffer from different drawbacks. Together with
the large number of event logs used for the comparative assessment, this should
stimulate the objectivity of the results.
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Dimension Name Symbol Author

Avai-
lable
in

ProM

Range Model input
type

Recall

Fitness f
Rozinat and van der

Aalst [107] X [0,1] Petri net

Completeness PFcomplete
Alves de Medeiros et al.

[7] X [-∞,1] Heuristic net

Completeness Greco et al. [66] [0,1] Workflow
schema

Parsing
Measure PM Weijters et al. [153] X [0,1] Heuristic net

Succesfully
executed traces set Rozinat [109] X [0,1] Petri net

Behavioral
Recall rpB Goedertier et al. [63] [0,1] Petri net

Average
alignment-
based trace

fitness

favg
a Adriansyah et al. [4] X [0,1] Petri net

Precision

Behavioral Ap-
propriateness aB

Rozinat and van der
Aalst [107] X [0,1] Petri net

Advanced
Behavioral Ap-
propriateness

a
′

B

Rozinat and van der
Aalst [107] X [0,1] Petri net

Soundness Greco et al. [66] [0,1] Workflow
schema

Behavioral
Specificity snB Goedertier et al. [63] [0,1] Petri net

Behavioral
Precision pB De Weerdt et al. [43] [0,1] Petri net

ETC Precision etcP
Muñoz-Gama and
Carmona [96] X [0,1] Petri net

One align
precision a1

p Adriansyah et al. [1] X [0,1] Petri net

Best align
precision ap Adriansyah et al. [1] X [0,1] Petri net

Table 3.2: Overview of process discovery accuracy dimensions and metrics

Combining Precision and Recall: F-score

A crucial problem of a comparative quality assessment of process discovery tech-
niques is the absence of a validated evaluation framework for discovered process
models. In this study, the F-score is employed in order to evaluate the overall accu-
racy of a discovered process model. It should be noted that there is no proper gen-
eralization metric available. However, the availability of multiple precision metrics
allows to investigate the way process models underfit the data. Since underfitting
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is typically a more common problem for process discovery techniques, the pro-
posed methodology remains a defensible approach. Nevertheless, it is pointed out
that in an ideal scenario, generalization is also taken into account. In this way, a
more comprehensive evaluation methodology could be set up.

Originally, the F-measure (Equation 3.1) was proposed by van Rijsbergen [147]
in the context of information retrieval. In the fields of machine learning and data
mining [123], the F-measure is often used as a standard balance between precision
and recall for evaluating point classifiers.

Fβ = (1 + β)2 × precision× recall
β2 × precision + recall (3.1)

The β-parameter is a weight factor to influence the relative importance of
precision and recall. With β equal to 1, precision and recall are weighted evenly.
This results in the F1-score. However, because process models discovered from
real-life event logs are used, it might be interesting to change the weight factor in
favor of recall. In Section 4.5, we will also report on the F2-score, weighing recall
twice as much as precision. This is because especially for real-life event logs, recall
is to be considered more important than precision.

3.4 Evaluating Comprehensibility

As an evaluation criterion for mined process models, comprehensibility has re-
ceived modest attention in the literature. Nonetheless, some articles have indi-
cated that the available process discovery algorithms face a crucial problem with
discovering comprehensible process models from highly unstructured event logs
[62, 68, 139]. An important reason for the inferior interest in comprehensibility is
the lack of good quantification methods for process model complexity. Moreover,
the issue of comprehensibility is of inferior value when taking into account artifi-
cial event logs. Typically, process models mined from such event logs are smaller
and much less complex then models mined from real-life event logs.

Within the domain of process modeling, Mendling et al. [93] have done much
empirical work on the understandability of process models. They characterize un-
derstandability in terms of personal, structural and textual factors. They also
found that experts with a more elevated familiarity with concurrency typically
are better in understanding process models. Furthermore, an important insight
of their study is the relation between structuredness and understandability. The
most important result for our study is the major influence of model size on un-
derstandability.
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3.4.1 Comprehensibility Metrics

Although Mendling et al. describe interesting results with respect to the com-
prehensibility of process models, they do not provide one or more comprehensive
metrics that quantify understandability. Therefore, we will employ metrics that
were proposed by Lassen and van der Aalst. In [82], they describe three metrics
for quantifying model complexity: Extended Cardoso metric (ECaM), Extended
Cyclomatic metric (ECyM) and Structuredness Metric (SM). The first metric is
based on a metric proposed by Cardoso [26] which takes into account certain
splits and joins within the process model. The ECaM metric inherently perceives
process model complexity in a local way because the metric only takes into ac-
count the successor nodes of each place. The ECyM metric builds further on work
of McCabe [92]. In contrast to ECaM, the ECyM metric is based on the state
space of the process model. This characteristic puts a strain on its applicability
in a real-life environment because calculating the state space of complex process
models often turns out to be infeasible. Finally, SM is a new metric that identi-
fies behavioral patterns in a process model and scores these patterns according
to their type and elements. The authors state that their SM metric is a better
reflection of complexity because it takes into account penalties for components
that are embedded in others. Lassen and van der Aalst implemented their metrics
in a plugin for the ProM-framework. It should be pointed out that these metrics
are designed for safe and sound WF-nets. The main reason is that the metrics
are developed in the context of process modeling, rather than process mining.
Because most process mining algorithms cannot guarantee to produce safe and
sound WF-nets, we should take this limitation into account in the results section.

Next to ECaM, ECyM and SM, we will assess process model comprehen-
sibility by also reporting more straightforward indications of model complexity
in terms of Petri net building blocks such as number of transitions, number of
places and number of arcs. Furthermore, the amount of a number of control-
flow constructs are reported: the number of AND-Splits/Joins and the number of
OR-Splits/Joins. Note that the inclusion of these measurements is driven by the
findings of Mendling et al. [93] who showed that model size has a major impact on
understandability. It should be noted that these net characteristics are influenced
by the type of algorithm. For example, the genetic algorithms and HeuristicsMiner
produce Heuristic nets. When these nets are converted into Petri nets, a lot of in-
visible transitions are created, mainly for routing purposes. This creates a certain
bias with respect to employing these metrics for comprehensibility evaluation.
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3.5 Empirical Setup
The first and major objective of this study is to assess process discovery techniques
with respect to accuracy and comprehensibility. In order to do so, we will apply
most of the metrics presented in Sections 3.3 and 3.4 to a subset of techniques
depicted in Section 3.1. Furthermore, we will apply advanced statistical analysis
techniques in order to compare the results and draw general conclusions. The
empirical setup of the study is described in the following paragraphs.

3.5.1 Process Discovery Techniques
We assessed a total of seven state-of-the-art process discovery techniques: α+,
α++, AGNEsMiner, Genetic Miner, Duplicate Task (DT) Genetic Miner, Heuris-
ticsMiner and ILP Miner. Furthermore, we also report on the results of a flower
model for each of the event logs, which is a process model that allows for any com-
bination of activities and thus is a maximum sensitive but highly imprecise pro-
cess model. It was infeasible to incorporate all process discovery techniques from
Section 3.1 because of three important reasons. First of all, not every proposed
algorithm is publicly available. Secondly, in order to evaluate process models, it is
required that the technique presents results in the form of a Petri net or that the
result is transformable to a Petri net. Finally, many techniques lack scalability
and therefore don’t allow to calculate models based on real-life event logs which
are typically larger and more complex than artificially constructed event logs.

Suitability of the Search Space: Representational Bias

It is recognized that the current experimental setup considers Petri nets as being
the representational language for the discovered process models. This choice is
mainly driven by the fact that a majority of process discovery techniques makes
use of this representation or their representation can be translated into a Petri
net. A second element that plays an important role in this choice relies in the
dominance of Petri nets as the underlying model representation for conformance
checking techniques.

However, as indicated in [133], Petri nets suffer from inherent drawbacks as
a representational language for process discovery. For instance, the search space
includes large numbers of inconsistent models (e.g. presenting deadlocks) which is
an undesirable feature of the representational bias. Furthermore, because of the
low-level nature of Petri nets, each specific algorithm makes further assumptions
with regard to the representational bias. As an example, some algorithms sup-
port invisible transitions, others support duplicates, loops, etc. Accordingly, it is
often the process itself in terms of its characteristics that determines which rep-
resentational bias is most appropriate [134]. However, in real-life environments, it
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is a distinct challenge to upfront determine which representational bias is more
suitable. Thus far, developers of process discovery algorithms did not explicitly
consider the assumptions made with regard to the representational bias. As pro-
posed in [133], a more tailored representational language for process discovery such
as C-nets are capable of alleviating the bias problem. Nevertheless, the adoption
of C-nets in the process mining domain is still limited.

Parameter Settings

Although many of the selected techniques require parameter tuning, we opted to
employ standard settings as much as possible. However, for Genetic Miner and DT
Genetic Miner, we reduced the population size to 10 and increased the maximum
number of generations to 5.000 for the real-life event logs. This is according to the
experiments in [10]. Furthermore, HeuristicsMiner was configured to also discover
long distance dependencies. Finally, for AGNEsMiner, the injection probability π
was lowered to 0,04 consistent with [62].

It should be noted that parameter tuning of some of these algorithms could
potentially increase the performance. However, changing the parameters often re-
quires prior knowledge that is seldomly available. Due to relatively high calcula-
tion times for both the process models as well as the evaluation metrics, especially
for the more complex real-life event logs, a parameter tuning phase is practically
infeasible. Moreover, for techniques like Genetic Miner and AGNEsMiner, there
are over 10 parameters. This makes the inclusion of parameter tuning even more
infeasible.

3.5.2 Artificial and Real-Life Event Logs
Evaluation of process discovery algorithms traditionally relied on artificial event
logs. For example, Alves de Medeiros et al. [10] and Goedertier et al. [63] report
performance of different algorithms on artificial logs in order to demonstrate some
specific requirements for process discovery algorithms such as dealing with parallel
behavior, loops, non-local dependencies, etc. Alves de Medeiros et al. also present
some results on four small scale real-life event logs. However, to our knowledge,
this study is the first to provide a comprehensive benchmarking study of process
discovery algorithms using real-life event logs.

In order to present a thorough assessment of process mining techniques, we
will evaluate the algorithms both on artificial as well as on real-life event logs.
Table 3.3 provides some details on twenty artificial event logs, which have been
used previously by Alves de Medeiros et al. [7] to evaluate the Genetic Miner
algorithm.

The real-life event logs are described in Table 4.1. These logs originate from
information systems of different organizations: a university, a telecom company, a
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a10skip 12 6 300 1 X
a12 14 5 300 2
a5 7 13 300 1 X
a6nfc 8 3 300 1 X
a7 9 14 300 4
a8 10 4 300 1
betaSimplified 13 4 300 0 X X X
choice 12 16 300 0
DriversLicense 9 2 300 0
DriversLincensel 11 87 350 1 X X X X
herbstFig3p4 12 32 300 3 X
herbstFig5p19 8 6 300 1 X
herbstFig6p18 7 153 300 0 X
herbstFig6p31 9 4 300 0 X
herbstFig6p36 12 2 300 0 X
herbstFig6p38 7 5 300 3 X
herbstFig6p41 16 12 300 4
l2l 6 10 300 0 X
l2lOptional 6 9 300 0 X
l2lSkip 6 8 300 0 X

Table 3.3: Artificial event log properties

manufacturing company and an insurance company. All the event logs are record-
ings of human-centric processes and therefore exhibit a medium to high level of
unstructuredness. In order to characterize the data sets, a number of event log
properties are presented in Table 4.1, such as the number of process instances (#
PI), number of events (# EV), number of activity types (# AT) and the number
of distinct process instances (# DPI). Furthermore, we also show three important
metrics proposed by Günther [67]: level of detail (LoD), structure (ST) and mean
affinity (MA). Level of detail is defined as the mean number of event classes per
trace in the event log. Structure denotes the amount of observed behavior com-
pared to the amount of theoretically possible behavior. A low value on structure
indicates a more demanding challenge for process discovery techniques because it
is very difficult to represent unstructured behavior in a sensitive and comprehen-
sible process model. Mean affinity is somewhat similar to structure as this metric
quantifies the mean relative overlap of direct following relations between each two
traces in the event log. Again, low mean affinity values indicate an elevated diffi-
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culty for process discovery techniques. From Table 4.1, it can be seen that event
logs UFM and XNB are especially problematic with respect to the diversity of
behavior recorded.

3.5.3 Statistical Testing

For analysis purposes, we make use of a collection of statistical techniques. These
techniques provide mathematical ground for the conclusions.

ANOVA, Friedman and Bonferonni-Dunn

In order to compare the performance of multiple algorithms on manifold data
sets, we make use of simple ANOVA (ANalysis Of VAriance) and a procedure
described in Dems̆ar [46]. In a first step of this procedure, the Friedman test [59]
is performed which is a non-parametric equivalent of the well known ANOVA
test. The null hypothesis of the Friedman test states that all techniques perform
equivalent. The test statistic is defined as:

χ2
F = 12P

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4


with Rj the average rank of algorithm j = 1, 2 . . . k over P data sets. Under the
null hypothesis, the Friedman test statistic is distributed according to χ2

F with
k − 1 degrees of freedom, at least when P and k are big enough (P > 10 and
k > 5), but in case of the real-life event logs, the exact critical values are used
based on an adjusted Fisher z-distribution.

If the null hypothesis of equivalent performing techniques is rejected by the
Friedman test, a post-hoc Bonferroni-Dunn test [49] is applied to compare the pro-
cess discovery techniques. The post-hoc Bonferroni-Dunn test is a non-parametric
alternative to the Tukey test and is defined as:

CD = qα

√
k(k + 1)

6P

with critical value qα based on the Studentized range statistic divided by
√

2,
and an additional Bonferroni correction by dividing the confidence level α by the
number of comparisons made, α

(k−1) , to control for family wise testing. This results
in a lower confidence level and thus in higher power. The difference in performance
between the best performing technique and other techniques is significant if the
corresponding average ranks differ by at least the Critical Distance (CD).
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Principal Component Analysis and Canonical Correlation Analysis

In order to provide broader insights into the multi-dimensional quality assessment,
the results of both a Principal Component Analysis (PCA) and a Canonical Cor-
relation Analysis will be reported. PCA [77] is a statistical technique that uses an
orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of uncorrelated variables called principal components.
Because it is one of the most popular data exploration techniques, it fits very well
within the research domain of process mining, which is exploratory in nature as
well.

Next to PCA, we will also employ Canonical Correlation Analysis. This data
analysis technique, introduced by Hotelling [73], allows to identify commonalities
between two sets of variables. Given the different evaluation dimensions and the
various metrics, we will be able to provide insight into the relations between these
dimensions.

3.6 Results
The results section is subdivided into three parts. First, the accuracy of process
discovery algorithms on artificial event logs is discussed. In a second part, we
report on the assessment of the same techniques to real-life event logs with a
key focus on accuracy and comprehensibility. Finally, a statistical multivariate
analysis is presented in order to come up with more general findings.

3.6.1 Artificial Event Logs
The accuracy results for the artificial event logs are summarized in Tables 3.5
and 3.6. Table 3.5 represents the average results of eight algorithms on twenty
artificial event logs for eight different metrics. Note that, in this and all following
tables, the subsequent notation is used: the best average performance is under-
lined and denoted in bold face for each metric. A one-tailed paired t-test was
used to test the significance of the performance differences in terms of absolute
results. A non-parametric procedure combining the Friedman and Bonferonni-
Dunn tests was used to test the significance of performance differences in terms
of the average ranks, which are denoted between brackets. Performances that are
not significantly different at the 95% level from the top-ranking perfor-
mance are tabulated in bold face. Statistically significant underperformances at
the 99% level are emphasized in italics. Performances significantly different at the
95% level but not at the 99% level are reported in normal font.

From Table 3.5, it can be concluded that overall, there is little difference be-
tween the selected process discovery algorithms. However, a remarkable result
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Recall Precision

f rpB PM a
′

B snB pB etcP

AGNEsMiner 0,995 0,998 0,926 0,813 0,980 0,924 0,913

α+ 0,969 0,952 0,753 0,873 0,964 0,862 0,918

α++ 0,984 0,972 0,823 0,879 0,982 0,921 0,952

DT Genetic
Miner 0,996 0,999 0,911 0,778 0,984 0,914 0,952

Genetic Miner 0,998 0,984 0,927 0,737 0,987 0,936 0,943

HeuristicsMiner 0,973 0,959 0,778 0,809 0,982 0,907 0,945

ILP Miner 1,000 0,991 na 0,786 0,972 0,873 0,902

Flower 1,000 1,000 1,000 0,219 0,000 0,117 0,134

Table 3.5: Average accuracy results for the artificial event logs

is that HeuristicsMiner presents a significant underperformance with respect to
recall. Also, the different precision metrics present somewhat contradictory re-
sults. In Section , we have indicated some issues with a

′

B which are due to the
state space exploration that is required to calculate this metric. This study again
indicates significant differences between a′

B and other precision metrics.
Table 3.6 presents the application of the F-measure to rpB , pB (approach A)

and f , a′

B (approach B) respectively. By examining both evaluation approaches,
we can conclude that AGNEsMiner, DT Genetic Miner and Genetic Miner per-
form outstandingly, whereas the results of HeuristicsMiner, ILP Miner and the
α-algorithms tend to indicate slight accuracy problems, given the setting of eval-
uation based on artificial event logs. HeuristicsMiner and the α-algorithms show
an underperformance in recall, while ILP Miner accounts for less precise process
models.

3.6.2 Real-Life Event Logs
In contrast to the artificial event logs, the algorithms are assessed along two
dimensions, namely accuracy and comprehensibility.

Accuracy

The accuracy results for the real-life event logs are displayed in Tables 3.7 and
3.8. The former presents the aggregate accuracy results. Note that in this table,
the Parsing Measure (PM ) is replaced by the number of successfully executed
traces (abbreviated as set). This metric is a Petri net alternative for the Parsing
Measure, which could only be calculated for about 50% of the real-life event log
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Approach A Approach B

rpB pB F1 rp
B
,pB

F2 rp
B
,pB

f a
′

B F1 f,a′
B

F2 f,a′
B

AGNEsMiner 0,998
(3,6)

0,924
(3,5)

0,953
(3,4)

0,976
(3,3)

0,995
(3,9)

0,813
(3,6)

0,873
(3,6)

0,932
(3,6)

α+ 0,952
(4,6)

0,862
(4,7)

0,892
(5,0)

0,922
(5,0)

0,969
(4,7)

0,873
(3,6)

0,904
(3,8)

0,935
(4,1)

α++ 0,972
(4,2)

0,921
(3,7)

0,941
(3,8)

0,957
(3,8)

0,984
(4,1)

0,879
(3,3)

0,897
(3,6)

0,916
(3,5)

DT Genetic
Miner

0,999
(3,6)

0,914
(3,8)

0,949
(3,8)

0,977
(3,5)

0,996
(3,8)

0,778
(4,1)

0,851
(4,1)

0,922
(4,0)

Genetic Miner 0,984
(3,8)

0,936
(3,6)

0,954
(3,6)

0,970
(3,7)

0,998
(3,8)

0,737
(5,0)

0,829
(4,8)

0,915
(4,6)

HeuristicsMiner 0,959
(4,5)

0,907
(4,3)

0,927
(4,3)

0,944
(4,4)

0,973
(4,5)

0,809
(4,1)

0,864
(4,0)

0,918
(4,1)

ILP Miner 0,991
(3,7)

0,873
(4,5)

0,919
(4,2)

0,958
(4,4)

1,000
(3,3)

0,786
(4,4)

0,850
(4,2)

0,916
(4,1)

Flower 1,000 0,117 0,208 0,392 1,000 0,219 0,349 0,556

Table 3.6: Average F1- and F2-scores for the artificial event logs, with average
ranks between brackets

based process models because the calculation of the metric requires a translation
from a Petri net to a heuristic net which often failed. Furthermore, the etcP -metric
is not represented for the same reason since it could not be calculated for a large
enough number of process models. Finally, we also added the average run time
of each algorithm. Note also that the detailed results of the selected discovery
techniques can be found in Appendix A.

From Table 3.7, it can be concluded that there is much more significant dif-
ference amongst the process discovery techniques. ILP Miner clearly outperforms
the other algorithms in terms of recall, whereas HeuristicsMiner has the upper
hand with respect to precision. From these results, it becomes lucid why the use

Recall Precision
Run time

f rpB set a
′

B snB pB

AGNEsMiner 0,744 0,861 0,362 0,590 0,897 0,363 10h:29m:2s

α+ 0,648 0,551 0,033 0,491 0,625 0,237 1s

α++ 0,523 0,373 0,015 0,433 0,624 0,249 1s

DT Genetic
Miner 0,751 0,871 0,383 0,697 0,896 0,329 1d:6h:57m:47s

Genetic Miner 0,524 0,819 0,227 0,713 0,935 0,429 3d:12h:41m:53s

HeuristicsMiner 0,775 0,729 0,469 0,778 0,960 0,516 5s

ILP Miner 0,965 0,951 1,000 0,593 0,766 0,249 2m:8s

Flower 1,000 1,000 1,000 0,352 0,009 0,049 1s

Table 3.7: Average accuracy results for the real-life event logs
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Approach A Approach B

rpB pB F1 rp
B
,pB

F2 rp
B
,pB

f a
′

B F1 f,a′
B

F2 f,a′
B

AGNEsMiner 0,861
(3,4)

0,363
(3,6)

0,476
(3,1)

0,612
(2,8)

0,744
(4,0)

0,590
(5,1)

0,642
(4,3)

0,694
(3,9)

α+ 0,551
(5,4 )

0,237
(5,7 )

0,265
(6,3 )

0,338
(6,6 )

0,648
(4,7)

0,491
(4,8)

0,547
(4,9)

0,598
(4,9)

α++ 0,373
(6,6 )

0,249
(5,3 )

0,262
(5,6 )

0,296
(6,3 )

0,523
(5,2 )

0,433
(5,9 )

0,473
(4,0)

0,501
(5,1)

DT Genetic
Miner

0,871
(2,8)

0,329
(4,0)

0,457
(3,9)

0,615
(3,0)

0,751
(3,9)

0,697
(3,3)

0,703
(4,6)

0,725
(3,6)

Genetic Miner 0,819
(3,1)

0,429
(3,0)

0,535
(2,6)

0,652
(2,5)

0,524
(5,9 )

0,713
(3,0)

0,563
(4,6)

0,534
(5,5)

HeuristicsMiner 0,729
(5,0)

0,516
(1,9)

0,587
(2,0)

0,656
(2,6)

0,775
(2,8)

0,778
(1,8)

0,737
(2,6)

0,753
(2,5)

ILP Miner 0,951
(1,8)

0,249
(4,5)

0,371
(4,5)

0,553
(4,3)

0,965
(1,6)

0,593
(4,1)

0,699
(3,0)

0,809
(2,5)

Flower 1,000 0,049 0,092 0,197 1,000 0,352 0,477 0,627

Table 3.8: Average F1- and F2-scores for the real-life event logs, with average
ranks between brackets

of the F-score as an accuracy evaluation method becomes feasible. It provides a
valuable approach to balance between recall and precision. By combining recall
and precision values into one metric, the overall accuracy of discovered process
models can be assessed.

The F-score results for the real-life event logs is shown in Table 3.8. From
this table, it can be seen that HeuristicsMiner is the most powerful technique in
a real-life environment. It outperforms the other algorithms for both evaluation
approaches and according to both the parametric and non-parametric statistical
evaluation. Only according to the F2 f,a′

B
metric where recall is weighed twice as

much as precision, ILP Miner shows better performance. However, this is mainly
due to the fact that the precision metric (a′

B) overestimates the actual precision of
the model. For a detailed analysis on the drawbacks of a′

B , we refer to the previous
chapter. Another conclusion that can be formulated from Table 3.8 is that the
α-algorithms are least suitable. This is not surprising because these algorithms
are more theoretical in nature and therefore less robust in a real-life setting.

When comparing the performances on real-life event logs with those of the
artificial logs, it becomes clear that there are significant differences between both.
As for the artificial event logs, especially AGNEsMiner and the genetic algorithms
rank at the top. However, for the real-life event logs, this picture shifts thoroughly
as the HeuristicsMiner algorithm clearly outperforms these algorithms. What is
also important to notice is the significant difference in average run time, which
again favors the HeuristicsMiner algorithm.
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Comprehensibility

Next to accuracy, a second focus of this evaluation study is mined process model
comprehensibility. The metrics identified for evaluating comprehensibility are de-
scribed in Section 3.4.1. Despite the choice for quantifying comprehensibility by
using process model complexity metrics, it goes without saying that assessing
model comprehensibility in a quantitative way is challenging. Because compre-
hensibility remains largely subjective, relying on a visual analysis is definitely
worthwhile in practice.

In order to clarify the discussion on comprehensibility to some extent, Figures
3.2, 3.3 and 3.4 show a selection of the discovered process models. Figures 3.2 and
3.3 show the discovery results of a less complex real-life event log (XAO). From
this figure, it can be seen that even for relatively simple event logs, the compre-
hensibility of the models can differ significantly. For instance, the ILP Miner result
shows a significantly higher number of arcs with respect to the number of places
and transitions. What is more, the transformation of the models discovered by
HeuristicsMiner and Genetic Miner (i.e. heuristic nets) to Petri nets entails the
inclusion of different invisible transitions for routing purposes, which obviously
decreases comprehensibility.

In contrast to the relatively understandable process models in Figures 3.2
and 3.3, the picture shifts when taking into account Figure 3.4. The fragment
of the ILP Miner model clearly shows a severe degree of incomprehensibility.
The HeuristicsMiner result might be judged more comprehensible to some extent,
but overall comprehensibility is moderate as well. This indicates that for highly
complex event logs, even better performing techniques such as HeuristicsMiner
and AGNEsMiner fail to address the challenge of complexity. From the visual
analysis, it can be concluded that foremost the number of arcs with respect to
the number of nodes is an appropriate indicator of model comprehensibility.

As indicated earlier, a quantitative approach for assessing comprehensibility
was opted for. Table 3.9 provides the average results over the eight real-life event
logs for each of the algorithms. For those metrics that are not in the [0, 1]-interval,
we scaled the results for each event log and afterwards averaged these scaled
values. Notice that in this table the lower the value, the better. Furthermore,
the average ranks are again reported between brackets. Note also that the ECyM
metric could not be reported as an average because the metric resulted in a high
amount of infinite values. The main reason hereto is the infeasibility to calculate
the state space of a certain mined process model. Therefore, we did not include
this metric in the evaluation table. Note that the log-specific comprehensibility
results can be found in Appendix B.

The comprehensibility results do not allow for a straightforward interpretation.
Therefore, we will discuss a number of key observations. First of all, Genetic Miner
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(a) AGNEsMiner

(b) GeneticMiner

Figure 3.2: Discovered process models by AGNEsMiner and Genetic Miner for
the XAO data set
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(a) ILPMiner

(b) HeuristicsMiner

Figure 3.3: Discovered process models by ILP Miner and HeuristicsMiner for the
XAO data set
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(a) Petri net discovered by HeuristicsMiner

(b) Fragment of the result of ILP Miner, clearly showing overspecification

Figure 3.4: Discovered process models for the complex UFM event log
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transi-
tions places arcs AND-

Joins
AND-
Splits

OR-
Joins

OR-
Splits ECaM SM

AGNEsMiner 0,515
(3,9)

0,332
(2,4)

0,301
(2,1)

0,402
(2,9)

0,363
(2,6)

0,267
(2,6)

0,279
(2,1)

0,275
(2,5)

0,173
(4,3)

α+ 0,354
(2,6)

0,459
(3,9)

0,367
(3,3)

0,510
(4,1)

0,515
(4,2)

0,414
(4,0)

0,374
(3,8)

0,331
(3,0)

0,257
(3,2)

α++ 0,331
(3,2)

0,605
(5,1)

0,641
(5,3)

0,543
(5,2)

0,633
(5,6)

0,757
(6,1 )

0,710
(5,6 )

0,611
(4,8)

0,240
(4,8)

DT Genetic
Miner

0,772
(5,3)

0,594
(4,1)

0,400
(3,0)

0,364
(2,3)

0,392
(2,6)

0,310
(2,7)

0,309
(2,6)

0,468
(3,9)

0,245
(3,6)

Genetic Miner 0,919
(6,1 )

0,834
(6,1 )

0,544
(4,8)

0,755
(4,8)

0,618
(3,6)

0,567
(4,6)

0,656
(4,9)

0,565
(4,8)

0,585
(5,3)

HeuristicsMiner 0,715
(5,2)

0,482
(3,9)

0,360
(3,4)

0,633
(4,4)

0,618
(4,3)

0,364
(3,0)

0,410
(3,4)

0,372
(3,8)

0,209
(4,5)

ILP Miner 0,381
(1,9)

0,365
(2,6)

0,866
(6,1 )

0,626
(4,4)

0,742
(5,1)

0,653
(5,1)

0,696
(5,7 )

0,770
(5,3)

0,140
(2,4)

Flower 0,409 0,046 0,141 0,000 0,000 0,031 0,036 0,021 0,002

Table 3.9: Comprehensibility results for the real-life event logs

is critically underperforming since all possible incomprehensibility indicators show
that discovered process models by this algorithm are significantly more difficult to
interpret than those of other process discovery algorithms. This adds to the fact
that the algorithm is also problematic in terms of run time. Although Bratosin
et al. [20] showed how the performance of genetic miner could be improved by
applying a sampling procedure, we argue that the use of Genetic Miner in a real-
life setting is inadvisable.

Secondly, regarding the Petri net building blocks, it can be seen that ILP Miner
comes up with process models with an extremely high amount of arcs. More
precisely, this algorithm creates on average 1633 arcs between transitions and
places and vice versa. Whatever other metrics might indicate, this high amount
of arcs renders any process model incomprehensible. As illustrated in Figures 3.2
and 3.3, even for easier data sets such as XAO, the overfitting behavior of ILP
Miner clearly complicates comprehensibility.

Another important remark is the major contradiction between the ECaM-
metric and the SM-metric. Although both metrics are not able to indicate com-
prehensibility differences between the techniques when taking into account the
average ranks, the absolute values of these metrics dissent severely. This differ-
ence might be due to the discrepancy in local or global analysis of complexity.
However, we think that it also indicates that it is not very straightforward to
devise comprehensibility metrics that are suitable for process models mined from
real-life event logs.

Notwithstanding the visual inspection of the discovered process models, the
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results in Table 3.9 illustrate that it is challenging to prove significant differences
between process discovery algorithms statistically. In addition, all of the presented
metrics suffer from some kind of bias. Simple metrics such as number of places,
arcs, AND-Joins/Splits and OR-Joins/Splits are influenced by the modeling lan-
guage whereas the more advanced complexity metrics suffer from the difficulty
to deal with highly unstructured process models which are less common within
process modeling, the domain they were devised for. We can expect that by taking
into account a multitude of metrics, these biases are slightly filtered out. There-
fore, we think that this analysis remains valuable.

To conclude, it should be noted that in general, the comprehensibility of dis-
covered process models is mediocre. Especially for the more difficult event logs
like UFM and XNB, the discovered process models are highly unstructured and
therefore uninterpretable, which shows that knowledge discovery from such data
sets causes major problems for traditional process discovery techniques.

3.6.3 Multivariate Analysis
In this final part of the results section, we provide the outcome of the application of
two statistical analysis techniques, as described in Section 3.5.3. These techniques
allow for the formulation of some more general findings regarding the evaluation
of process discovery techniques in a real-life setting.

Principal Component Analysis

Principal Component Analysis is a variable reduction technique that is well suited
to analyze a number of interrelated variables. In this case, we applied PCA on a
data set consisting of 61 observations, each observation being the results of one
process discovery algorithm on one data set. Note that for three algorithm event
log combinations, the discovery algorithm could not learn a process model from
the data. Our main goal is to find out whether a high number of both accuracy
and comprehensibility metrics can be reduced to a manageable few without much
loss of information. The analysis took into account fifteen different metrics, as
represented in Table 3.10.

Figure 3.5 is the scree plot, as proposed by Cattell [29], which allows to identify
the number of principal components (PCs) to retain. The figure shows an elbow
point at PC3. However, because the eigenvalue of the fourth principal component
also exceeds 1, we report the principal component scores for the first four PCs.
These four principal components account for 83% of the variance of the original
data.

Table 3.10 shows the loadings of the different principal components with re-
spect to the original variables. Firstly, it can be seen that the first principal
component (PC1) is highly correlated with all the comprehensibility variables.
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Figure 3.5: Scree plot of the PCA showing an elbow point at PC3

This PC can be seen as an aggregate of process model comprehensibility, which
shows that the selected comprehensibility metrics correlate significantly. As such,
by investigating the average principal component scores of PC1 for the different
algorithms, we can conclude that Genetic Miner (2,39) and ILP Miner (0,58) can
be considered more incomprehensible models whereas AGNEsMiner (-0,60) and
HeuristicsMiner (-0,30) are better performing in this dimension. Table 3.10 fur-
ther indicates that PC2 captures the variance in recall, whereas PC3 represents
the precision of discovered process models. Finally, PC4 is strongly correlated
with a′

S .
In conclusion, this analysis implies that it can be useful to combine different

metrics into a single variable in order to evaluate a process model in respect to a
certain dimension. However, this combination of metrics is strictly different from
the F-measure approach introduced in Section 3.1, which is a method to find a
balance between different accuracy dimensions.

Canonical Correlations

Canonical correlation analysis is an appropriate statistical technique for analysis of
relationships between two sets of variables. The technique, developed by Hotelling
[73], accounts for the covariation of the variables from both within and across sets.
Because we can expect to find correlations between accuracy, comprehensibility
and log complexity, canonical correlation is a suitable method for analyzing the
relationships between the dimensions proposed. The data set used consisted of
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PC1 PC2 PC3 PC4

rp
B 0,310 0,695 0,368 -0,168

f -0,515 0,707 0,148 0,225

set -0,206 0,863 0,169 0,112

pB -0,077 -0,264 0,762 0,238

a′

B 0,036 -0,494 0,526 0,403

a′

S 0,112 0,070 -0,496 0,808

SM 0,861 -0,045 0,149 0,038

ECaM 0,797 0,404 -0,025 0,039

transitions 0,816 -0,078 -0,078 -0,196

places 0,961 -0,019 0,114 0,006

arcs 0,832 0,389 -0,027 0,032

AND-Joins 0,956 0,036 0,043 -0,062

AND-Splits 0,959 -0,011 0,036 -0,026

OR-Joins 0,956 0,117 0,079 0,074

OR-Splits 0,944 0,166 0,041 0,081

Table 3.10: Loadings of the principal components

the same 61 observations from the previous section extended with the event log
characteristics described in Table 3.4.

The results of three separate canonical correlation analyses are presented, as
shown in Table 3.11. These analyses differ from each other in terms of the choice
of criterion and predictor variables. For every analysis, only the first canonical
variate pair was significant at the 0,01 level, as determined by the F-value of the
Wilks’ Λ-tests. This test is equivalent to the likelihood ratio test and it verifies
the null hypothesis that the canonical correlations in the current row and all
that follow are zero. From this, we can conclude that the analyses allude to the
presence of interdependence between the different sets of variables.

It should be noted that large canonical correlations may not imply strong
correlation between the criterion and predictor variables. In order to discuss the
practical significance of the canonical correlation analyses, we make use of a redun-
dancy measure as proposed by Stewart and Love [122]. This measure determines
how much of the variance in one set of variables is accounted for by the other set
of variables. As such, the proportion of variance in the accuracy variables pre-
dictable from the log complexity variables was 21%. Similarly, the proportion of
variance in the comprehensibility variables predictable from the log complexity
variables amounted up to 24%. Finally, about 28% of the variance in the accuracy
variables is shared by the comprehensibility variables. Taking into account that a
lot of variance in the criterion variables is accounted for by the type of algorithm
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Criterion variables Predictor variables 1st Can. Corr.

CCA 1
Accuracy Log complexity 0,79

f , rpB , set, a
′

B , pB
# PI, # EV, # AT, # DPI,

LoD, ST, MA
(F = 2, 26 with
p = 0, 0002)

CCA 2
Comprehensibility Log complexity 0,75

places, arcs, AND-Joins,
AND-Splits, OR-Joins,
OR-Splits, ECaM, SM

# PI, # EV, # AT, # DPI,
LoD, ST, MA

(F = 1, 63 with
p = 0, 0068)

CCA 3

Accuracy Comprehensibility 0,76

f , rpB , set, a
′

B , pB

transitions, places, arcs,
AND-Joins, AND-Splits,
OR-Joins, OR-Splits,

ECaM, SM

(F = 1, 86 with
p = 0, 0021)

Table 3.11: Criterion and predictor variables for the three different canonical
correlation analyses, with the value and the significance of the first canonical
correlation

applied, we can conclude that there is practical evidence that log complexity has
an important impact on both accuracy and comprehensibility. Furthermore, a
noteworthy correlation exists between accuracy and comprehensibility.

To conclude this canonical correlation analysis, we provide the correlations
between the first canonical variable and the original variables in Table 3.12.
These correlations, also known as structural correlations, allow for interpreting
the canonical variates. For example, from the first canonical correlation analysis
(CCA 1), we can see that the first canonical variate represents foremost Behavioral
Precision (pB) and to a lesser extent fitness (f). Similarly, for the log complexity
predictor variables, it can be seen that both the number of distinct process in-
stances (# DPI) and the number of process instances (# PI) have an important
influence on the first canonical variate LogComplexity1. Thus, the shared variance
between accuracy and log complexity is mainly expressed by the influence of #
DPI and # PI on pB and f.

Furthermore, for CCA 2 it can be seen that the first canonical variate Com-
prehensibility1 is strongly correlated with ECaM, number of arcs and number of
AND-Joins/Splits and LogComplexity1 is predominantly correlated with # AT.
These positive correlations bring about that the number of activity types has a
notable influence on process model comprehensibility.

Finally, ascertaining the relationship between accuracy and comprehensibility
in CCA 3, it can be concluded that there exists a strong negative relation between
predominantly the recall variables (f , rpB) and the number of transitions, the
number of places and the number of AND-Joins/Splits. Accordingly, the shared
variance between comprehensibility and accuracy is primarily channeled through
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CCA 1 CCA 2 CCA 3
Accuracy1 Comprehensibility1 Accuracy1

f -0,53 places 0,38 f -0,88
rpB -0,41 arcs 0,66 rpB -0.63
set -0,31 AND-Joins 0,64 set -0,45
a

′

B 0,21 AND-Splits 0,64 a
′

B 0,27
pB -0,74 OR-Joins 0,38 pB -0,09

OR-Splits 0,47
ECaM 0,68
SM 0,20

LogComplexity1 LogComplexity1 Comprehensibility1
# PI 0,55 # PI 0,44 transitions 0,73
# EV 0,30 # EV 0,29 places 0,69
# AT 0,21 # AT 0,94 arcs 0,36
# DPI 0,75 # DPI 0,42 AND-Joins 0,75
LoD -0,10 LoD -0,29 AND-Splits 0,72
ST -0,44 ST 0,29 OR-Joins 0,59
MA -0,35 MA -0,55 OR-Splits 0,58

ECaM 0,28
SM 0,57

Table 3.12: Correlations between the first canonical variate and their original
variables for each of the canonical correlation analyses (CCAs)

the recall variables.

3.7 Discussion
In Section 3.5, the quality assessment of process discovery techniques is restricted
to algorithms that discover a Petri net or algorithms of which the resulting models
can be transformed into a Petri net. There exist two important reasons why a
Petri net-based evaluation methodology is opted for. Firstly, a majority of state-
of-the-art discovery algorithms comply with this requirement. Furthermore, from
an evaluation perspective, the majority of metrics for assessing discovered process
models is defined in terms of Petri nets. In this way, a Petri net-based quality
assessment is considered the most feasible approach to benchmarking process
discovery algorithms.

3.7.1 Representational Bias
It is important to note that the choice for Petri nets as the representational lan-
guage for discovered process models might collide with this study’s main goal
to assess process discovery techniques based on real-life event logs. For a more
general discussion on the representational bias in process discovery, we refer to
[134]. The main issue of our study is that especially for highly complex event logs
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exhibiting a large variety in process behavior, relying on Petri nets as the represen-
tational language might be less suited. It has been found (e.g. [62, 133]) that Petri
net- based discovery techniques sometimes lack the capabilities to learn accurate
and comprehensible models from this type of event logs. In such cases, alterna-
tive discovery techniques such as the Fuzzy Miner [67], or event log manipulation
techniques (e.g. pattern abstractions [14], sequence clustering [54, 66, 120], etc.)
are considered more useful because these techniques feature better abstraction ca-
pabilities. Despite the potential of alternative discovery techniques with increased
abstraction capabilities going beyond the discovery of a single process model,
they require a different evaluation methodology since abstraction itself needs to
be taken into account as an extra evaluation dimension. It should be noted that
research with respect to holistically benchmarking different approaches for the
analysis of highly complex event logs is to the best of our knowledge nonexistent
in the process mining literature. The issue of representational bias is of course
strongly related to the chosen evaluation methodology. Accordingly, the main
limitations of our approach are discussed in the next section.

3.7.2 Limitations of a Petri Net-Based Evaluation Method-
ology

The limitations of the chosen representational bias, i.e. Petri nets, are twofold.
Firstly, the representational bias might cause the inability to represent the under-
lying process model of a certain event log well. This is related to what is explained
in the previous paragraph. Techniques that discover a single Petri net from an
event log might be confronted with the problem that not even a single element in
the search space is a satisfactory discovery result. As far as we know, no research
has explicitly focused on the ability of different representational biases to discover
process models from event logs, let alone on the improvement of the representa-
tional bias for process discovery. Notwithstanding that design-oriented languages
such as Petri nets or EPCs are often used for the representation of discovered pro-
cess models, the modeling origin often complicates the process discovery learning
problem. As such, it should be investigated how to increase the flexibility of the
representational bias, for instance by using less restrictive languages such as fuzzy
nets [67], declarative models [138] or C-nets [135].

A second limitation following the choice for Petri nets is that discovered models
can be internally inconsistent (i.e. not sound). This is because none of the dis-
covery techniques limit the search space to sound workflow nets (WF-nets [124]).
As such, discovered process models might contain livelocks and/or deadlocks. The
problem of soundness is strongly confirmed by this study as well, since none of the
discovery techniques was able to discover a sound Petri net, even from the more
straightforward real-life event logs. Notwithstanding the fact that unsoundness
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has a definite impact on both accuracy and comprehensibility of process discov-
ery techniques, it remains debatable whether a Petri net-based process discovery
technique’s first priority should be to render sound process models. Soundness
is foremost important in the process modeling domain, whereas the main goal
of process discovery techniques is to provide insight into a set of process execu-
tions. Since soundness is not the top priority problem in process discovery, we find
that currently available process discovery techniques apparently do not consider
soundness in their learning strategies. It can be argued that the importance of
soundness is such that it should be incorporated in the process discovery learn-
ing problem. However, it is shown that the process discovery learning problem
is highly challenging even without considering soundness. Accordingly, it can be
advocated that due to low-level nature and additional criteria such as sound-
ness, Petri nets might not be the most suitable representational bias for process
discovery.

Despite the limitations of Petri net-based discovery techniques, it is beyond
the scope of this study to explore or assess the whole aspect of the representational
bias in process discovery. Furthermore, it is rarely known upfront whether an event
log will create major challenges for traditional process discovery techniques. As
such, it remains very useful to know which discovery techniques perform better on
real-life event logs, even if after initial analysis improved abstraction techniques
may provide more useful results. In addition, many solutions for the complexity
problem arising from event logs displaying a high variety of process behavior, will
inevitably make use of some sort of process notation. In spite of the shortcomings,
Petri nets remain a valid option for this task.

3.7.3 The Issue of Parameter Tuning

As described in Section 3.5.1, we opted to employ standard parameter settings
except for those techniques for which there exists sources in the literature to alter
these standard parameters. For instance, for Genetic Miner and AGNEsMiner, we
adopted the parameters according to the demonstrated settings in [10] and [63]
respectively. It is acknowledged that this experimental setup choice restricts the
level of generality of our conclusions. Nonetheless, parameter tuning of process
discovery techniques is very complicated. As illustrated in the results section,
many techniques require multiple hours of run time before presenting a result.
Furthermore, the amount of time required to calculate the evaluation metrics is
sometimes even larger. Accordingly, complete parameter tuning of all assessed
techniques is totally infeasible. Also in [23], parameter tuning of the Heuristic-
sMiner algorithm is investigated. Due to the real-valued parameters, a designated
solution strategy is proposed, which relies on discretizing real-valued parameters
and applying the Minimum Description Length (MDL) principle to calculate the
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optimal solution. Nevertheless, the use of this kind of strategy for the whole set of
assessed techniques would require huge computation times due to computational
complexity of both the model building as well as the calculation of evaluation
metrics. As such, this strategy is deemed infeasible.

To conclude, developers of process discovery techniques should be aware of
the fact that extensive parameter tuning is often completely infeasible. Therefore,
they should either design algorithms which require few parameters or they should
validate their novel technique on wide ranges of data sets in order to define ranges
for the required parameters which can serve as guidelines for application of the
technique in practice. In the domain of data mining, Kriegel et al. [79] pointed out
that designers of data mining algorithms should avoid the use of type-iparameters
so as to increase the usability of the algorithm. They also state that if type-
iparameters are required, it is a best practice to try to automatically configure
the parameters by including the parameter tuning in the optimization problem.

3.8 Conclusion
Assessing the quality of process discovery techniques is an essential element for
both process mining research as well as for the use of process mining in practice.
Up till now, evaluation of process discovery techniques was performed in very
diverse ways, but mostly on artificial data sets. In this study, a multi-dimensional
evaluation study was carried out in order to evaluate process mining techniques
comprehensively on eight real-life event logs. The results of our study allow for
the formulation of a number of key conclusions:

• There exists an important difference between evaluation of process discovery
algorithms based on either artificial or real-life event logs. The use of real-life
event logs for process discovery quality assessment is a major contribution
of this study.

• The F-score methodology is a valuable approach to combine recall and pre-
cision metrics in order to assess overall accuracy of a process model.

• HeuristicsMiner seems the most appropriate and robust technique in a real-
life context in terms of accuracy, comprehensibility, and scalability.

• It was statistically validated that dealing with high complexity event logs
remains an important challenge for process mining algorithms, both in terms
of accuracy as well as in terms of comprehensibility.

• Proficient quantification of discovered process model comprehensibility still
faces fundamental challenges. Metrics from the process modeling domain
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were applied in this study, but were found to be difficult to interpret because
of the low-level of structure many mined, real-life process models exhibit.

• Multivariate statistical analyses showed that it might be useful to reduce
different metrics into one single quantification of a certain dimension. Fur-
thermore, it was demonstrated that there exists important correlations be-
tween process model accuracy, process model comprehensibility and event
log complexity.

• Representational bias is a widely overlooked research topic in the process
mining domain. This study centering on single model Petri net discovery
techniques shows that for complex real-life event logs, alternative analysis
techniques can be expected to be an interesting follow-up analysis.

Overall, we think that the future of process mining research should emphasize
on developing insightful techniques for analyzing real-life event logs. Although
currently available control-flow discovery techniques can still play a significant
role in conducting process mining analysis in practice, more complex event logs
require novel data exploration techniques with a definite focus on comprehensi-
bility. For instance, Bose and van der Aalst [18] show how trace alignment might
be used to derive insights from complex event logs. In similar fashion, trace clus-
tering is also an interesting process data exploration technique offering a solution
for highly complex data sets. Therefore, in the next chapter, a novel trace clus-
tering technique is proposed that provides an alternative methodology for solving
the learning difficulties that many single model process discovery techniques are
confronted with.
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Chapter 4
Active Trace Clustering for
Improved Process Discovery

The previous chapter clearly indicated that the simple application of existing,
single model process discovery techniques will often yield highly incomprehensi-
ble process models because of their inaccuracy and complexity. With respect to
resolving this problem, trace clustering is one very interesting approach since it
allows to split up an existing event log so as to facilitate the knowledge discovery
process. In this chapter, a novel trace clustering technique is described which sig-
nificantly differs from previous approaches. Above all, it starts from the observa-
tion that currently available techniques suffer from a large divergence between the
clustering bias and the evaluation bias. By employing an active learning inspired
approach, this bias divergence is solved. In an assessment using both a controlled
environment as well as four real-life event logs, it is shown that our technique
significantly outperforms currently available trace clustering techniques from a
process discovery evaluation perspective.

4.1 Trace Clustering in Process Mining
Process Mining has been demonstrated to possess the capabilities to profoundly
assess business processes [135]. In particular, process mining techniques are highly
suitable in flexible environments such as healthcare, customer relationship man-
agement (CRM), product development, etc. [68]. This is because information sys-
tems in such environments often grant a higher degree of freedom to their users.
Accordingly, Process Mining proves to be valuable by discovering the actual pro-
cess at hand.

79
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The starting point of analysis is an event log, which is basically a set of pro-
cess executions capturing the different business activities that were performed in
the context of a certain case. In this study, the control-flow perspective, i.e. the
different transition relationships between the activities in the event log, is the ob-
ject of analysis. However, typical event logs will contain much more information,
for instance organizational information concerning the performers of the different
activities [121].

The most crucial learning task in the process mining domain is termed process
discovery and can be defined as the construction of a process model from an event
log [118, 131]. Process discovery is a largely unsupervised learning task in nature
due to the fact that event logs rarely contain negative events to record that a par-
ticular activity could not have taken place. Despite the demonstrated usefulness in
flexible environments, it has been shown that process discovery is most challeng-
ing in this context. Various studies illustrate that process discovery techniques
experience difficulties to render accurate and interpretable process models out
of event logs stemming from highly flexible environments [15, 62, 68, 150]. This
problem is largely due to the high variety of behavior that is captured in certain
event logs. Accordingly, different approaches have been proposed to cope with this
issue. Next to event log filtering, event log transformation [14] and tailor-made
discovery techniques such as Fuzzy Mining [67], trace clustering can be consid-
ered a versatile solution for reducing the complexity of the learning task at hand.
This is because one can rely on multiple process models to represent the variety
in behavior of a certain event log by separating execution traces into different
groups. The purpose of clustering process executions is detailed in Figure 4.1. By
dividing traces into different groups, process discovery techniques can be applied
on subsets of behavior and thus improve the accuracy and comprehensibility.

In this chapter, we build further on the idea of clustering event log traces in
order to reduce the complexity of the process discovery learning task. Therefore, a
novel approach is described that aims at improving currently available techniques
by directly optimizing the accuracy of the cluster’s underlying process models. In
this way, the gap between the clustering bias and the evaluation bias from which
currently available techniques suffer, is bridged. As such, this chapter is structured
as follows. In Section 5.3.2 we provide an overview of existing approaches to trace
clustering. Section 4.3 details the new trace clustering approach. Then Section
4.4 introduces multiple metrics for evaluating the quality of a trace clustering
technique. These metrics are employed in Section 4.5 in which the novel trace
clustering technique is assessed and compared to existing techniques, both in a
controlled environment as well as by making use of 4 real-life event logs. Finally,
Section 4.6 provides a discussion before conclusions are formulated in Section
5.1.4.
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Figure 4.1: Illustration of the purpose of trace clustering in Process Mining

4.2 Related work
In the literature, different approaches to trace clustering have been proposed.
Many techniques apply a kind of translation to the learning problem so as to
make use of the existing distance-based clustering algorithms proposed in the
data mining domain. For instance, by converting an event log into a vector space
model, a distance metric can be defined between each couple of traces. However,
there also exist techniques that define the distance between two traces without
the translation to an attribute-value context. Furthermore, model-based clustering
techniques were shown to be applicable for trace clustering as well.

Vector space approaches Greco et al. [66] were pioneers in studying the clus-
tering of log traces within the process mining domain. They use a vector space
model considering the activities and the activity transitions to cluster the traces
in an event log with the purpose of discovering more simple process models for
the subgroups. The authors propose the use of Disjunctive Workflow Schemas
(DWS) for discovering process models. The underlying clustering methodology is
k-means clustering. Song et al. [120] elaborate on the idea of constructing a vector
space model for traces in an event log. In contrast to [66], this technique allows
for a multitude of so-called profiles to determine the vector associated with each
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process instance. As such, they define an activity profile, transition profile, per-
formance profile, case attribute profile, etc. Furthermore, the implementation of
the technique presents a full range of distance metrics and clustering techniques.

Context-aware trace clustering The most recent trace clustering techniques
in Process Mining are described by Jagadeesh Chandra Bose and van der Aalst
[15], [16]. The clustering techniques presented in these studies extend contempo-
rary approaches by improving the way in which control-flow context information
is taken into account. In [15], the authors propose a generic edit distance tech-
nique which is founded on the Levenshtein distance [85], a distance metric for
comparing strings. The approach relies on deriving specific substitution, insertion
and deletion costs so as to take into account the behavior in the event log. The
idea of context-aware trace clustering is further developed in [16]. In this study,
the authors return to the principle of generating a vector space model for the
traces in an event log. However, instead of using activities and/or transitions as
a basis for the vector space model, it is proposed to use conserved patterns or
subsequences. In this way, the authors define Maximal, Super Maximal, and Near
Super Maximal Repeats to create feature sets that determine the vector of a cer-
tain trace. Note that one of the advantages of the pattern-based feature sets over
the generic edit distance approach is that it can be combined with feature sets
that rely on other types of information as in [120].

Model-based sequence clustering A totally different approach to trace clus-
tering was proposed by Ferreira et al. [55]. Inspired by the work of Cadez et al. [24]
in the area of web usage mining, they propose to cluster sequences by learning a
mixture of first-order Markov models using the Expectation-Maximization (EM)
algorithm. In [150], this model-based trace clustering technique is applied to server
logs with the purpose of demonstrating its usefulness in a real-life setting. Note
that the technique presented in the next section is most similar to [55], notwith-
standing that the underlying model representation and the clustering strategy is
different.

4.3 Active Trace Clustering

This section introduces the new trace clustering approach. Its conception is sig-
nificantly different from earlier techniques because it builds upon the observation
that traditional trace clustering techniques suffer from a divergence between the
clustering bias and the evaluation bias.
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4.3.1 Clustering Bias vs. Evaluation Bias
The key idea behind existing trace clustering algorithms is to group traces that
exhibit similar features. Although this idea is intuitive and has proven useful, it
suffers from a fundamental problem. In a traditional data mining setting, clusters
are created and evaluated based upon the idea of maximizing intra-cluster similar-
ity and minimizing inter-cluster similarity. As such, currently available clustering
techniques apply either a hierarchical or a partitional method like k-means for
creating clusters. However, as described in [16], the most important evaluation
dimension for trace clustering is from a process discovery perspective. This en-
tails that for each cluster, a certain discovery technique will create a process model
and the corresponding process model accuracy and process model complexity are
combined to determine the quality of a certain clustering solution. Because ex-
isting techniques do not take into account the quality of the underlying process
models of each of the clusters during the clustering procedure, these techniques
suffer from a strong divergence between the evaluation bias and the clustering
bias. Accordingly, it is highly questionable whether the existing clustering ap-
proaches will yield satisfactory results in terms of process models. In Section 4.5,
it will be shown that this bias divergence indeed causes inferior results for existing
trace clustering approaches.

Against this background, this chapter puts forward an entirely different ap-
proach to trace clustering. It does not rely on a vector space model, nor does it
define a metric for quantifying similarity between two process instances. Instead,
the technique proposed in this study is designed so as to solve the problem of find-
ing an optimal distribution of execution traces over a given number of clusters
whereby the combined accuracy of the associated process models is maximized.
Note that brute-force solution strategies for this optimization problem are compu-
tationally intractable because they scale exponentially in terms of the number of
distinct process instances in the log. For instance, in case of only 10 distinct traces
and 4 clusters, more than 1 million different solutions are possible. Therefore, our
technique proposes a top-down, greedy algorithm that computes a solution for
this problem by grouping traces not because they exhibit similar behavior but
because they fit well in a certain process model.

4.3.2 An Active Learning Inspired Approach
We term the novel clustering technique Active Trace Clustering (ActiTraC). It is
called active since it is inspired by a couple of principles of active learning in the
field of machine learning. For a detailed survey of active learning literature, we
refer to Settles [117]. The key idea behind active learning is that a machine learn-
ing algorithm can achieve better results with fewer training data if it is allowed
to choose the data from which it learns [11], [31]. Despite the fact that active
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learning is generally employed in the context of supervised learning techniques
in order to reduce the classification error or label uncertainty (e.g. [90]), studies
like [72] have demonstrated that the principles of active learning can be employed
in an unsupervised setting as well. In this way, our proposed trace clustering
technique borrows a couple of elements from the general idea of active learning.
Most importantly, a selective sampling strategy is employed. Typically, an active
learner will decide upon which instances to select based on some informativeness
measure. In this case, the frequency of a trace is used as the primordial measure
for its informativeness. Furthermore, the proposed technique is a greedy approach
which does not guarantee an optimal solution in terms of process model accuracy.
Finally, the clustering solution will often be based on a subset of the event log
traces. Nonetheless, it is recognized that there exist differences as well. For in-
stance, active learning in a supervised context focuses on problem areas for which
the current model is uncertain. Mostly due to the fact that our approach is situ-
ated in an unsupervised context, our technique does not really focus on problem
areas.

4.3.3 Notation

Before outlining the ActiTraC algorithm, some important concepts and notations
that are used in the remainder of this study are discussed. An event log (L)
consists of events (ev) that pertain to process instances. A process instance (pi)
is defined as a logical grouping of activities whose state changes are recorded as
events. As such, it is assumed that it is possible to record events such that each
event refers to an activity type (at), i.e. a step in a process instance, a case, i.e.
the process instance, and that events are totally ordered. Note also that identical
process instances (i.e. traces with the same sequence of events) can be grouped
into a distinct process instance, further denotes as dpi. A dpi is defined as a set
of pi with the number of pi in the set denoted as the frequency of the dpi. A
collection of dpi’s is called a grouped event log (GL).

4.3.4 A Three-Phase Algorithm

In general, Active Trace Clustering (ActiTraC) aims at creating clusters of event
log traces for which the resulting process model is accurate according to some
metric. The algorithm consists of three distinct phases: selection, look ahead and
residual trace resolution. Its pseudo-code is depicted in Algorithm 1. Before the
actual three phases of the algorithm can be carried out, identical process instances
pi in event log L are grouped into distinct process instances dpi. Furthermore, the
set of created clusters CS is initialized to the empty set and the set of remaining
distinct process instances R contains all dpi’s created in the first step.
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Algorithm 1 ActiTraC
Input: An event log L, the number of clusters nbclus, a target fitness tf, a minimum cluster

size mcs and a window size w
Output: A collection of event logs, represented by a set of clusters CS
1: Convert L into a grouped event log GL
2: CS ← ∅ # CS denotes the set of clusters
3: R← GL # R denotes the set of remaining dpi’s
4: while (|CS| < nbclus) ∧ (R 6= ∅) do
5: C ← ∅ # C denotes the set of dpi’s in the cluster
6: I ← ∅ # I denotes the set of ignored dpi’s

7: Phase 1: Selection

8: repeat
9: Define W as the union of the most frequent dpi in R \ I and the set of the top

w% dpi’s in R \ I according to frequency # w specifies the size of the window
10: if C = ∅ ∨ |W | = 1 then
11: cur_dpi ∈ R|(∀dpi ∈ R : |dpi| ≤ |cur_dpi|)
12: else
13: cur_dpi ∈W |(∀dpi ∈W : distMRA(C, dpi) ≥ distMRA(C, cur_dpi)) # function

distMRA is the average MRA-based Euclidean distance between the dpi’s in C
and cur_dpi

14: end if
15: PM ← HM(C ∪ {cur_dpi})
16: if fitness(PM) ≥ tf then
17: C ← C ∪ {cur_dpi}
18: R← R \ {cur_dpi}
19: else
20: if

∑
dpi∈C

|dpi| ≥ mcs ×
∑

dpi∈R

|dpi| then

21: PM ← HM(C)

22: Phase 2: Look ahead

23: for all dpi ∈ R do
24: if fits(dpi,PM) then
25: C ← C ∪ {dpi}
26: R← R \ {dpi}
27: end if
28: end for
29: exit repeat

30: else
31: I ← I ∪ {cur_dpi}
32: end if
33: end if
34: until (R = ∅) ∨ (R = I)
35: add the constructed cluster C to CS
36: end while

37: Phase 3: Residual trace resolution

38: if create new cluster for remaining traces then
39: add new cluster C to CS with C ← R
40: else
41: add each dpi in R to that C in CS for which its fitness, as calculated on the under-

lying process model, is highest
42: end if
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Selection

In the first phase, traces are iteratively selected using a selective sampling strategy.
The goal is to add a new distinct process instance to the set of already selected
instances, with the purpose of evaluating the process model discovered from this
new sub-event log. If the process model remains accurate enough, the selected
trace is added to the current cluster and the selection procedure is repeated. As
long as it is possible to add a trace to the current cluster without decreasing the
process model accuracy, this process continues. To deal with the problem that
small clusters are created, the minimum cluster size (mcs) parameter, ranging
between 0 and 1, can be used so as to continue the selection and model building
phase when an instance is encountered that results in an unfit process model (line
20). In this way, the algorithm can skip certain traces to increase the size of the
current cluster.

Frequency-based selective sampling. The window size (w) parameter in line
9 gives rise to two variants of the ActiTraC algorithm. In case w is set to 0, the
frequency window W will only contain the most frequent dpi in R. In this case,
a straightforward selective sampling strategy is put in place that beholds the
selection of the most frequent dpi. For this selected dpi and all the dpi’s already
in C (with C denoting the set of dpi’s being part of the current cluster), a process
model (PM ) is calculated based on the function HM. HM denotes the application
of the Heuristics Miner algorithm to the set of dpi’s. In the remaining part, this
frequency-based selective sampling algorithm will be denoted ActiTraCfreq.

Distance-based selective sampling. Next to the basic frequency-based sam-
pling, ActiTraC provides the flexibility to include a more complex selection strat-
egy. In fact, ActiTraC can be adapted so as to take into account any kind of
distance function between distinct process instances. As such, by increasing the
window size w, it becomes possible to define a selective sampling strategy that
incorporates the idea of clustering more similar traces together. In this study, it
is opted to include an MRA-based Euclidean distance function as defined in [16].
This ActiTraC variant is further denoted as ActiTraCMRA. The MRA-technique
was selected because of its computational tractability and because it was found
better performing in [16]. Note that the distance function in line 13 of Algo-
rithm 1 is applied as follows: from the current set of remaining dpi’s, a window is
defined based on frequency. For example, the 25% most frequent dpi form the win-
dow. Within this window, the algorithm targets that dpi with the lowest average
MRA-based Euclidean distance with respect to the current set of dpi’s in C. In
this way, more similar traces in terms of control-flow behavior are tested first and
the resulting clustering solution will significantly differ from the first approach
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solely relying on frequency. Note that it was opted to rely on frequency partly
by defining a window in order to guide the clustering process towards creating
a sufficiently large cluster with respect to the amount of remaining traces. In a
similar way as with frequency-based selective sampling, the dpi is added to the
current cluster and a process model (PM ) is calculated with HeuristicsMiner.

Once this process model is created, it is verified whether the fitness of the
process model is still above a predefined threshold, the target fitness (tf). If the
fitness remains higher than the tf, the dpi is added to the current set of instances
C and a new selection is initiated. However, if the process model fitness drops
below the tf, it should be verified whether the minimum cluster size (mcs) is
attained. If so, selection is halted and phase two commences. Nevertheless, if the
mcs is not met, the currently selected dpi is added to a set of skipped dpi’s I and
the selective sampling of a new trace from R continues.

Look ahead

Once a process instance is encountered that decreases the model’s accuracy below
the specified threshold of the current cluster and the minimum cluster size is
reached, the first phase comes to an end. In the second, look ahead phase, the
remaining instances in the event log are taken into consideration (i.e. those traces
that have not been subject to the selection phase yet) by verifying whether some
of these traces do fit the process model created in the first phase. In this forward-
looking procedure, only distinct process instances that fit the current process
model perfectly (i.e. instances with an individual fitness of 1), are added to the
current cluster. Instances that do not fit the model remain in the event log for
which the selection phase can be started again to create a second cluster. This
iteration of selection and look ahead is continued until the predefined maximum
number of clusters is reached.

Residual trace resolution

Finally, the third phase specifies the resolution of the remaining traces in the event
log. Either the remaining instances can be separated into a distinct cluster or these
traces can be distributed over the created clusters according to the individual trace
fitness for the different process models created. Note that in the remainder, only
the latter option will be investigated because this choice will prevent the creation
of strongly skewed clusters in terms of their size, which might in its turn trick the
evaluation criteria as presented in Section 4.4.
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4.3.5 Assumptions
The presented algorithms can deal with most event logs. There exists one major
assumption regarding the frequency distribution of the process executions. One of
the underlying principles is to prioritize traces with higher frequency over traces
with a lower frequency. Of course, this can only be achieved in case of a non-
uniform distribution of trace frequencies. It can be assumed that in a majority of
real-life event logs, a non-uniform distribution is observed. However, it is pointed
out that for event logs with a close to uniform distribution, the algorithm will
present a result, but it will be challenging to attain sufficiently large clusters in
the first two phases of the algorithm.

Further, the algorithm is also subject to the implementation of a mining tech-
nique and an accuracy evaluation measure. Currently, it was opted to use Heuris-
ticsMiner [153] as the underlying discovery technique. This is because Heuris-
ticsMiner has been demonstrated to possess the best capabilities to deal with
real-life event logs in Chapter 3. The low computational costs of HeuristicsMiner
as compared to other available techniques is an essential requirement to keep con-
trol over the computational demands of ActiTraC. Finally, ActiTraC relies on the
ICS-fitness [152] for both the calculation of the overall accuracy of a process model
as well as for the calculation of the individual fitness of a single process instance.
This metric is similar to the well-known fitness metric defined by Rozinat and
van der Aalst [107], even though it is a metric for heuristic nets. Note that next
to the scalability of the metric’s replay procedure due to the avoidance of costly
state space calculations, another advantage of ICS-fitness is that it is not a pure
recall metric since it also punishes overly general models.

4.4 Cluster Quality Criteria
The evaluation of a trace clustering solution can be approached from two perspec-
tives. On the one hand, trace clusters can be assessed based on whether they group
traces that present domain-specific similarities. On the other hand, a set of trace
clusters can be evaluated from a process mining perspective, judging whether the
technique achieves the goal to create more accurate and more comprehensible
process models. In the next sections, both evaluation dimensions will be detailed.

4.4.1 Domain-Based Evaluation
Trace clustering techniques can have a primary objective to find groups of traces
that conform to some domain-related criterion. For instance, in a healthcare con-
text, a particular diagnosis will determine the specificities of the according care
flow pathway.
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Domain-related similarities between execution traces manifest themselves pre-
dominantly in resource information and case data. Nevertheless, trace clustering
techniques typically rely on control-flow information only so as to cluster event log
traces. This might strongly interfere with the objective to find domain-relevant
clusters because it cannot be guaranteed that control-flow information only suf-
fices. As such, finding those control-flow characteristics being the drivers behind
domain-relevant clusters seems like finding a needle in a haystack.

Entropy

Quantifying the quality of a trace clustering technique from a domain perspective
suffers from an important drawback which originates in the unsupervised nature
of the learning problem. Without any ex ante information about how many do-
mains should be found and which execution traces belong to which domain, it
is unfeasible to construct domain-based evaluation metrics. In case there is ex
ante information available, for instance in a gold standard evaluation setting, it
is possible to define evaluation metrics that quantify how well a certain technique
distinguishes the different classes of behavior. Examples of such metrics are true
positives, false positives, purity, etc. Another powerful metric that can quantify
clustering quality in a supervised setting is entropy. Entropy, a measure of disor-
der, has its origins in information theory, but can be applied advantageously in
a clustering setting. For the purpose of this study, the entropy of a set of trace
clusters is defined as follows.

Cluster Set Entropy (HCS): Let k denote the number of clusters, q the
number of classes, n the number of pi’s in the event log, ni the number of pi’s in
cluster i, and nij the number of pi’s in cluster i belonging to class j. Then HCS

is defined as follows:

HCS = −
k∑
i=1

ni
n

q∑
j=1

(
nij
ni

log2
nij
ni

) (4.1)

4.4.2 Process Mining-Based Evaluation

Next to domain, an even more crucial evaluation perspective is from a process
mining viewpoint. With the goal of any trace clustering technique being to improve
the accuracy and complexity of the process models discovered from an event log,
both accuracy and complexity should be included in a proper quantification of
the quality of a trace clustering solution. Note that this evaluation approach is
largely inspired by the ideas put forward in [16].
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Process model accuracy

Process model accuracy quantifies how well the observed behavior in an event
log is captured by the discovered process model. In the process mining literature,
assessing the quality of a process model with respect to a corresponding event
log is termed conformance checking [107], with trace replay an often employed
technique to calculate metrics. In Chapter 2, we have argued that assessing the
accuracy of a discovered process model ideally involves an evaluation of multiple
dimensions of which recall and precision are to be considered most important. In
this way, we make use of our F1-score so as to assess the overall accuracy of the
underlying discovered process model.

Obviously, individual F-scores for each of the clusters should be aggregated to
assess a clustering solution as a whole. In order to take into account differences
in size between the clusters, it was opted to weigh the individual F-scores based
on the number of traces (pi) in each cluster. Note that the F-measure also allows
to weigh recall and precision differently. In this case, it was opted to weigh them
equally. As such, the Weighted Average F1-score is defined as follows:

Weighted Average F1-score (F1W.A.): Let ni denote the number of traces
in cluster i (1 ≤ i ≤ k), F1i is the F1-score of the process model for trace cluster
i. Then F1W.A. is defined as follows:

F1W.A. =

k∑
i=1

niF1i

k∑
i=1

ni

(4.2)

Note that due to the incorporation of both recall and precision, the Weighted
Average F1-score will punish process models that do not represent the behavior
in the event log very well, as well as process models which over-generalize the
behavior.

Process model complexity

Next to improving process model accuracy, the goal of trace clustering is to render
more comprehensible process models. This comprehensibility can be quantified
using process model complexity metrics.

In the literature, Lassen and van der Aalst [82] describe a number of metrics
for quantifying process model complexity: Extended Cardoso metric (ECaM), Ex-
tended Cyclomatic metric (ECyM) and Structuredness Metric (SM). The main
issue with these metrics is that they are designed from a process modeling per-
spective and thus assume save and sound workflow nets (WF-nets). Since process
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discovery techniques cannot guarantee the discovery of nets that comply with
these properties, it was opted to define a more straightforward metric.

The definition of this metric is supported by the work of Mendling et al. [94]
who perform a study on the influence factors of process model understandability.
A main result of this study is that very simple metrics such as the number of
elements, the number of arcs, etc. are relatively good quantifiers of process model
complexity. Based on the assumption that the process models underlying the
formed clusters are represented by Petri nets [98], we define the Place/Transition
Connection Degree as follows:

Place/Transition Connection Degree (P/T-CD): Let |a| represent the
number of arcs in a Petri net, |P | the number of places and |T | the number of
transitions. Place/Transition Connection Degree P/T-CD is defined as follows:

P/T-CD = 1
2
|a|
|P |

+ 1
2
|a|
|T |

. (4.3)

In other words, P/T-CD is the weighted sum of the average number of arcs
per transition and the average number of arcs per place. It is argued that the
complexity of each of the models adds equally towards the difficulty of inter-
preting the entire clustering solution and therefore it is opted to not weigh the
model complexity according to the sizes of the cluster. Accordingly, the Average
Place/Transition Connection Degree is defined as follows:

Average Place/Transition Connection Degree (P/T-CDA): Let k

denote the number of clusters in the clustering solution, and P/T-CDi the
Place/Transition Connection Degree of the process model of cluster i. Then
P/T-CDA is defined as follows:

P/T-CDA =

k∑
i=1

P/T-CDi

k
. (4.4)

It is argued that this connection degree metric is an appropriate quantifier of
process model complexity, especially for the purpose of evaluating trace clustering
techniques because incomprehensible process models are often characterized by a
drastic increase in the number of arcs that connect places and transitions.

Inter- and intra-cluster similarity

A standard approach to evaluate clustering techniques in the data mining domain
relies on the paradigm to maximize intra-cluster similarity while minimizing inter-
cluster similarity. In a supervised trace clustering setting where the classes of be-
havior are known upfront, metrics such as entropy are an effective implementation
of this paradigm. However, in an unsupervised setting when classes of behavior
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are not known, it is much more challenging to adhere to the clustering evalua-
tion paradigm. Both accuracy and complexity metrics presented earlier quantify
intra-cluster similarity. However, there does not exist a standard approach to as-
sess the minimization of the inter-cluster similarity in trace clustering. It is out of
the scope of this study to put forward such an evaluation framework. Note again
that the proposed evaluation approach is similar to [15, 16].

4.5 Experimental Evaluation
In this section, the techniques proposed in this study are evaluated in two different
settings. First of all, a controlled environment is devised in which the parameter
configurations of the ActiTraC-algorithms are analyzed. Furthermore, this su-
pervised experiment is used to assess the capabilities of ActiTraC and existing
techniques of identifying ex ante defined classes of behavior. The remainder of
this section describes a scalability assessment of ActiTraC and a benchmarking
study based on 4 real-life event logs. Note that the trace clustering techniques
presented in this chapter are implemented as the ActiTraC plugin in ProM 61, an
academic process mining framework which allows the use and development of a
large variety of techniques for analyzing event logs. An illustration of the param-
eter configuration and the output view of the ActiTraC plugin is shown in Figure
4.2.

4.5.1 Controlled Environment Evaluation
Because there does not exist a comprehensive benchmarking environment for trace
clustering techniques in the process mining literature, it is opted to design a ded-
icated controlled evaluation environment. Such an experimental evaluation allows
for assessing whether the trace clustering techniques are capable of identifying ex
ante defined classes of behavior.

Design

A first essential design choice consists of the definition of different classes of be-
havior. Therefore, traces have to be generated so as to adhere to a certain class
of behavior as determined by a control-flow based domain criterion. Such criteria
can be very diverse, e.g. presence or absence of activities, presence or absence
of combinations of activities, looping behavior, etc. In the context of this assess-
ment, it was decided to opt for a straightforward criterion, namely the presence or
absence of a single activity. In this way, the Petri net in Figure 4.3 was designed
to generate different event logs with 3 classes of behavior: traces where activity

1http://www.promtools.org/prom6/
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Figure 4.3: Petri net used for generating different classes of behavior according to
the presence/absence of activities X and Y

X is present, traces where activity Y is present and traces where neither activity
X nor activity Y is present. Note that it was opted to include plenty of parallel
and looping behavior in order to mirror the complexity of a real-life event log.

Using this Petri net, three different event logs were generated randomly using
CPN Tools2, containing 2.000 cases of each behavioral class (6.000 cases in total)
and with each behavioral class accounting for 200 distinct process instances. The
three event logs differ in terms of the distribution of distinct process instances.
The exponential (linear) log presents a an exponentially (linearly) decreasing dis-
tribution in terms the frequency of the distinct process instances, while for the
uniform log each distinct process instance accounts for a frequency of 10.

Results

Within this controlled environment, different parameter settings for the ActiTraC
algorithm are evaluated by verifying how well ActiTraC is able to identify the dif-
ferent classes of behavior as well as by investigating the accuracy improvements
realized by clustering traces. Moreover, the performance of ActiTraC in this en-
vironment is compared to 7 existing trace clustering techniques.

Parameter settings. For ActiTraC, three parameters are considered essential:
window size, minimum cluster size and target fitness. As such, different values for
these parameters were evaluated according to Cluster Set Entropy and Weighted
Average F1-scores for the 3 artificial event logs, as shown in Figure 4.4. When
taking into account the ability of ActiTraC to distinguish between the induced

2http://www.cpntools.org
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clusters, the performance is rather weak. Especially for the uniform and linear
event log, the Cluster Set Entropy is very close to the maximal entropy of 1.585.
On the other hand, the exponential case provides us with some more insights
into the behavior of the algorithm. For instance, for the pure frequency-based
selective sampling (the first six settings on the x-axis), a decrease in terms of the
target fitness has a positive effect on the entropy. For the MRA-based sampling
procedure, the effects of window size and minimum cluster size depend on the
target fitness. In case of a target fitness of 1, a decreased window size tends to
improve Cluster Set Entropy, while for a decreased target fitness, an increase of
the window size tends to affect Cluster Set Entropy positively.

Next to entropy, the accuracy results realized with different values of the
ActiTraC parameters are detailed in Figure 4.4b. For the more challenging uniform
and linear logs, it holds that a decrease in target fitness has a positive effect on the
F1-scores. This is mostly due to the difficulty for ActiTraC to join high numbers of
traces in one single process model with perfect fitness. This is because the clusters
formed by ActiTraC with the target fitness set to 1 are founded on a limited set
of traces which causes the underlying models to be inaccurate for the entire set
of traces in the cluster. When decreasing the target fitness, clusters are created
based on a higher number of traces, which has a positive effect on the F1-score.
This shows that event logs consisting of more challenging control-flow behavior
for process discovery techniques might benefit from decreasing the target fitness.
Note that the solid, non-marked, horizontal line denotes the average F1-score over
the three event logs for the baseline scenario where no clustering is performed.

In the case of a more or less exponential distribution of trace frequencies, the
effects of decreasing the target fitness are reversed. For both selective sampling
strategies, the best results can be obtained by setting the target fitness to 1.
This is coherent with the design of ActiTraC which employs trace frequencies as
a steering information source for selecting traces and optimizing the underlying
process models. Finally, note that the effects of the minimum cluster size are
limited because of the difficulty of the artificially generated event logs. Due to the
pure randomness of trace generation, the ActiTraC algorithm is unable to find a
sufficient amount of traces that can be clustered with the selected target fitness.
In other situations, enlarging the minimum cluster size could be useful to increase
the total amount of traces on which the underlying process models are learned
from.

Benchmark performance. Next to the evaluation of different parameter set-
tings for ActiTraC, the closed environment is employed to benchmark the perfor-
mance with other clustering techniques. Based on the previous analysis, standard
parameter settings for both ActiTraCfreq and ActiTraCMRA are defined as follows:
target fitness is set to 1, minimum cluster size is set to 25% and for ActiTraCMRA
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Figure 4.4: Average Entropy and Weighted Average F1-scores for different param-
eter settings of ActiTraC and for 3 distinct event logs with varying frequency
distributions of the dpi’s
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a window size of 25% is set. Despite the fact that in some situations, it might
be useful to change these values, standard parameters are used in the remaining
analyses. Note that these settings are not optimal for each event log individually.
The development of a parameter optimization strategy that can deal with possibly
large computation times required for clustering and evaluation metric calculation
is out of the scope of this study.

ActiTraC is compared to 7 clustering techniques: MR and MRA [16], GED
and LED [15], bag of activities (BOA) and 3-gram [120], and the Markov chain
clustering technique from [55]. It should be noted that agglomerative hierarchical
clustering with minimum variance is used as the underlying clustering technique
for BOA, 3-gram, GED, LED, MR and MRA. Despite the fact that other under-
lying clustering techniques might increase performance, this is not considered in
this study. For BOA, 3-gram, MR and MRA, the best performing parameter set-
tings are employed for each evaluation criterion and for each event log individually
by varying the vector representation (i.e. binary or numeric) and the underlying
distance metric (i.e. F-score similarity or Euclidean distance). The application of
feature filtering is not considered. Finally, the average results of a 5-fold repetition
of randomly clustering traces into different groups is also added (Random).

The results of the comparative analysis are depicted in Figure 4.5. Taking into
account the Cluster Set Entropy, it is concluded that the benchmark techniques
tend to face the same difficulties as ActiTraC with respect to distinguishing the
different classes of behavior. Only the Markov clustering technique outperforms
the ActiTraC algorithms on every artificial data set. However, with a best Cluster
Set Entropy of only 1.44 (3-gram), the main conclusion of this experiment is that
all assessed clustering techniques are incapable of adequately detecting the prede-
termined classes. It is pointed out that clustering techniques might divide traces
into different clusters based on other domain-specific criteria. Accordingly, we
cannot draw general conclusions with respect to the domain relevancy of different
clustering techniques.

Figure 4.5b presents the accuracy results in terms of the Weighted Average F1-
score. Note that this metric is calculated by first applying HeuristicsMiner (with
standard parameter settings) to the clusters and then translating the resulting
model into a Petri net by making use of a translation plugin in ProM. Next, recall
and precision metrics are calculated and combined into an individual F1-score for
each cluster. As detailed in Section 4.4.2, these F1-scores can be weighted so as to
compute the Weighted Average F1-score for each of the solutions of the clustering
techniques. Note that for ActiTraC, the process models underlying each of the
clusters are calculated within the clustering algorithm.

In the figure, the effects of bridging the gap between clustering bias and eval-
uation bias are clearly observable. Even for the most challenging setting for Ac-
tiTraC, i.e. the uniform event log where there is no frequency difference between
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Figure 4.5: Comparison of ActiTraC with other trace clustering techniques ac-
cording to Average Entropy and Weighted Average F1-scores
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the traces and thus the selection is essentially random for ActiTraCfreq and purely
MRA-driven for ActiTraCMRA, both techniques outperform every other available
clustering technique, even with suboptimal parameter settings. As soon as trace
frequencies start to differ among traces, this effect is magnified.

4.5.2 Scalability
Before further assessing the capabilities of ActiTraC on real-life event logs, its
scalability is examined. Note that in Section 4.3.5, it was already pointed out
that some essential design choices of the algorithm, namely its underlying pro-
cess discovery technique and its underlying fitness score are mainly chosen for
scalability reasons. Regarding complexity, the core of the ActiTraC algorithm
scales linearly in terms of the number of dpi’s as well as in terms of the number
of clusters. However, the overall computational complexity of our algorithm de-
pends largely on the underlying techniques, i.e. the process discovery technique,
the fitness calculation and the trace selection procedure. As such, considering the
current choices, ActiTraC scales linearly in terms of the number of clusters and
quadratically in terms of dpi’s and in terms of activity types (at).

The computational complexity of ActiTraC

This paragraph details the computational complexity analysis of our algorithm
in term of the big O notation Hereto, we make use of the following notation:
nbclus denotes the number of clusters, dpi denotes the number of distinct process
instances in the event log, SSST denotes the selective sampling strategy, PDT
denotes the process discovery technique and FC denotes the fitness calculation.
As such, the computational complexity of the different subphases of ActiTraC can
be described as follows:

• Phase 1 - Selection:

O [nbclus × dpi × (f (SSST ) + f (PDT ) + f (FC ))]

• Phase 2 - Look ahead:

O [dpi × (f (FC))]

• Phase 3 - Residual trace resolution:

O [nbclus × dpi × (f (FC ))]

Aggregation of these complexities results in:
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O[nbclus × (dpi × (f(SSST ) + f(PDT ) + f(FC )) + dpi × (f(FC ))
+ nbclus × dpi × (f(FC )))]

O[nbclus× (dpi× (f(SSST ) + f(PDT ) + f(FC)) + dpi× (f(FC))
+ nbclus× dpi× (f(FC)))]

Simplifying results in:

O[nbclus × dpi × (f(SSST ) + f(PDT ) + f(FC ))]

As one can see, our algorithm scales linearly in terms of number clusters and
linearly in terms of dpi. Furthermore, computational complexity of ActiTraC de-
pends on the computational complexity of either the process discovery technique,
the fitness calculation or the selective sampling procedure, depending on the spe-
cific scalability of each of these functions.

For instance, instantiation to the current implementation of ActiTraC gives:

O[nbclus × dpi × (f(MRA-based Euclidean distance) + f(HM ) + f(ICS-fitness))]

Assuming that the scalability of HeuristicsMiner is worse than the selective
sampling method and the fitness calculation and assuming that HeuristicsMiner
scales linearly in terms of dpi’s and quadratically in terms of activity types (at),
the time complexity of ActiTraC is as follows:

O
[
nbclus × dpi2 × at2]

As such, it can be concluded that the ActiTraC algorithm scales linearly in
terms of the number of clusters and linearly in terms of dpi, but with the inclu-
sion of HeuristicsMiner as the underlying discovery technique, ActiTraC scales
quadratically in terms of dpi’s and in terms of at’s.

An experimental analysis of ActiTraC’s scalability

Next to a theoretical analysis of the computational complexity, an experimen-
tal analysis was performed as well. Figure 4.6 details a scalability analysis of
ActiTraC for its worst case scenario. This scenario is determined by setting the



4.5. Experimental Evaluation 101

window size to 1 and the target fitness to −∞. In this case, none of the imple-
mented greedy heuristics are used so that a maximal amount of selective sampling
procedures needs to be executed. The scalability assessment consists of the cre-
ation of 100 artificial event logs with varying number of activity types and varying
number of distinct process instances. Note that with these settings, the effect of
the underlying distribution of trace frequencies is canceled out. By focusing on
distinct process instances and activity types, the two main complexity criteria for
ActiTraC are taken into account.

Figure 4.6a depicts the run time results of 4 clustering algorithms varying the
number of distinct process instances. Note that the plot uses a logarithmic scale.
Each marker in this figure represents the average calculated over 10 different event
logs with varying number of activity types. Figure 4.6b mirrors this setting for
the number of activity types averaging out over 10 logs with varying number of
distinct process instances. The results clearly show an increased complexity for
ActiTraC as compared to contemporary clustering algorithms. Note that MRA
is shown as a representative for both GED as well as for all other vector space
approaches because of very similar performance results. In conclusion, ActiTraC in
its worst case scenario requires up to 50 times as much computational resources in
comparison to vector space approaches. Nonetheless, ActiTraC does outperform
the Markovian model-based clustering technique, which is the most similar of
all other clustering techniques in terms of the clustering procedure. Note that
the scalability assessment was performed on a standard stand-alone PC with a
2.83Ghz quad-core CPU and 3GB of RAM.

4.5.3 Real-Life Event Logs

The final part of the experimental evaluation of ActiTraC consists of its applica-
tion to 4 real-life event logs. Table 4.1 shows some basic statistics and a description
of the event logs used. It is important to note that the event logs originate from
flexible environments exhibiting a large variety of process behavior, as illustrated
with the metrics in the table. Because in real-life settings, ex ante classes of behav-
ior are unknown, the use of entropy-based evaluation is infeasible. Therefore, the
evaluation is centered on two dimensions, i.e. accuracy in terms of the Weighted
Average F1-score and complexity in terms of the Average Place/Transition Con-
nection Degree.

The experiments are set up in a similar way as the comparative assessment in
the controlled environment. For the 4 real-life event logs, 10 different trace cluster-
ing approaches were applied varying the maximal amount of clusters from 3 to 5.
For both ActiTraCfreq and ActiTraCMRA the standard parameters are used while
for the other techniques the best performing parameter settings are employed for
each data set and each cluster size individually. This setup emphasizes ActiTraC’s
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Label
Event log properties

Organization Process description
# pi # ev # at # dpi

KIM 24.770 124.217 18 1.174 KU Leuven Helpdesk process of the
ICT service

MCRM 956 11.218 22 212 Manufacturing
company CRM process

TSL 17.812 83.286 42 1.908 Telecom
company Second-line CRM process

ICP 12.391 65.653 70 1.411 Insurance
company

Incoming document
handling

Table 4.1: Description of the real-life event logs with following characteristics:
the number of process instances (# pi), number of events (# ev), the number of
activity types (# at), and the number of distinct process instances (# dpi)

robustness.

Accuracy results

The accuracy results are presented in Figure 4.7. The solid, non-marked, horizon-
tal line denotes the base case with no trace clustering where HeuristicsMiner is
applied to the whole event log. In general, it is concluded that the ActiTraC algo-
rithms significantly outperform the reference clustering algorithms with respect
to process model accuracy. We observe consistent performance improvements con-
sidering both the different event logs and the varying number of clusters.

Remark also that for many of the existing trace clustering techniques, the
Weighted Average F1-score is rather poor. As such, for event logs KIM and TSL,
almost all other techniques perform worse than the case of not clustering at all.
Also, in many situations, these techniques cannot significantly outperform the
random clustering of traces. This is clear evidence for the initial observation that
there is a strong divergence between the clustering bias and the evaluation bias
for these techniques. As for ActiTraC, it is concluded that in most cases, the pure
frequency-based selective sampling strategy will slightly outperform the MRA-
based selective sampling strategy from an accuracy perspective. However, the
smaller MCRM log shows that it can be advantageous to force the selection of
more similar traces first.

Complexity results

Our evaluation approach also consists of an assessment of the comprehensibil-
ity of the discovered process models. As explained in Section 4.4, the Average
Place/Transition Connection Degree is employed as a quantification of process
model complexity. The results of this complexity analysis are presented in Figure
4.8. For these plots, the lower the value, the better the performance because a
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Figure 4.7: Weighted Average F1-scores for the 4 real-life event logs. Note that
the ActiTraC algorithms clearly outperform the other clustering techniques in all
the benchmarks (higher is better)
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Figure 4.7: Weighted Average F1-scores for the 4 real-life event logs. Note that
the ActiTraC algorithms clearly outperform the other clustering techniques in all
the benchmarks (higher is better)
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Table 4.2: Average run times with 95% confidence interval for the real-life event
logs with 4 clusters

Technique KIM MCRM TSL ICP

ActiTraCfreq 00:04:39,912
± 6,568s

00:01:01,739
± 2,163s

00:05:02,383
± 15,694s

00:05:48,682
± 12,207s

ActiTraCMRA 00:02:58,496
± 1,306s

00:00:13,328
± 0,052s

00:06:11,680
± 1,671s

00:10:18,691
± 5,099s

ActiTraCWorstCase 01:27:58,290
± 9,603s

00:01:18,764
± 0,041s

02:04:35,266
± 48,694s

01:02:36,146
± 8,389s

MR 00:01:16,214
± 0,525s

00:00:01,907
± 0,005s

00:03:59,391
± 1,070s

00:01:12,726
± 0,337s

MRA 00:00:33,384
± 0,376s

00:00:01,778
± 0,014s

00:01:59,582
± 0,501s

00:00:56,089
± 0,328s

GED 00:00:41,952
± 0,068s

00:00:03,578
± 0,046s

00:01:10,673
± 0,467s

00:00:31,556
± 0,114s

LED 00:00:07,600
± 0,058s

00:00:00,391
± 0,001s

00:00:22,171
± 1,043s

00:00:09,297
± 0,087s

BOA 00:00:06,472
± 0,223s

00:00:00,244
± 0,010s

00:00:22,324
± 0,184s

00:00:11,309
± 0,270s

3-gram 00:00:21,862
± 0,070s

00:00:00,515
± 0,000s

00:02:54,665
± 0,847s

00:01:33,392
± 0,384s

Markov 08:22:40,000
± 9334,281s

00:00:51,000
± 13,917s

04:35:14,000
± 4042,004s

01:42:56,000
± 756,172s

decrease in Average Place/Transition Connection Degree signifies a less complex
process model.

From the figure, it can be seen that also from a complexity viewpoint, the
results clearly favor the ActiTraC algorithms. For the 4 real-life logs, the additional
decrease in complexity of the Petri net models as compared to the other clustering
techniques is significant. With respect to the difference between the ActiTraC
techniques themselves, there is a slight indication that MRA-based sampling has
the potential to create clusters for which the underlying process models are less
complex. Only for the ICP event log, this pattern cannot be observed.

Scalability

Because the computational complexity of ActiTraC is a crucial factor determining
its applicability in practice, Table 4.2 provides an overview of the run times of
the different techniques for the creation of 4 clusters for each of the real-life event
logs. From these results, it can be concluded that the greedy heuristics underlying
the ActiTraC algorithm are effective in terms of restricting the computational
requirements.
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Figure 4.8: Average Place/Transition Connection Degree for the 4 real-life event
logs. Note that the ActiTraC algorithms clearly outperform the other clustering
techniques in all the benchmarks (lower is better)
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Figure 4.8: Average Place/Transition Connection Degree for the 4 real-life event
logs. Note that the ActiTraC algorithms clearly outperform the other clustering
techniques in all the benchmarks (lower is better)
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4.6 Discussion
To conclude, the presented trace clustering technique achieves its goal to improve
currently available trace clustering techniques with respect to evaluating from a
process discovery perspective. Our approach changes the objective of traditional
trace clustering to find an optimal distribution in terms of grouping similar traces
together to the goal of solving the problem of finding an optimal distribution
of traces so as to maximize the combined accuracy of the underlying process
models. We think that in many situations, the latter objective is useful because
the challenge of finding a criterion that separates process instances according to
their intrinsic similarity is often made difficult due to the data explosion problem.
This problem was not only demonstrated with the experiment in the supervised
environment but is also recognized in [58] where outlier detection is proposed as
a solution for the problem.

Nevertheless, it is acknowledged that grouping homogeneous traces together is
useful. Therefore, ActiTraC has been provided with the flexibility to take into ac-
count any kind of distance function between instances. With respect to addressing
the challenge of combined accuracy and homogeneity optimization, we are con-
vinced that a more comprehensive benchmarking environment for trace clustering
techniques should be devised. Currently, such a framework is not available in the
process mining literature.

A final element of discussion is cluster characterization. For trace clustering
to be a genuine approach towards solving the complexity problem arising from
highly unstructured event logs, process analysts should be able to delineate the
discovered clusters to give an interpretation to the solution. Accordingly, in the
next section, an analysis is provided on how trace clusters can be characterized.
Also, a rule learning algorithm is shown to be useful to ex post characterize the
differences between groups of process instances.

4.7 Cluster Characterization
Qualifying the differences between the discovered process models in the clustering
solution plays a vital role for interpretability and thus usefulness of trace clus-
tering. In this section, three possible methods are identified that are capable of
typifying differences between sub-event logs in a clustering solution.

4.7.1 Visual Analysis of the Process Models
A straightforward solution for cluster characterization is the visual analysis of
the resulting process models. By a visual inspection, differences between process
models and the according trace clusters can be described. The implementation of
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ActiTraC in ProM 6 allows to visualize and store the process models. However,
although the visual inspection of the discovered process models is an intuitive
solution, different drawbacks exist. Foremost, even for two not overly complex
process models, it is all but easy to identify the key differences. As these dissimi-
larities might reside in small details, it is doubtful whether non-experts are able
to qualify process model differences based on a visual analysis.

4.7.2 Quantifying Similarity of Business Process Models

A second solution for cluster characterization is the use of similarity metrics be-
tween business process models. Dijkman et al. [47] and Alves de Medeiros et al.
[8] propose different metrics to quantify process model differences. Dijkman et
al. provide three different similarity metrics: node matching similarity, structural
similarity and behavioral similarity. In contrast, Alves de Medeiros et al. define
similarity metrics by comparing two process models based on some typical be-
haviors. However, as with other studies on quantifying process model similarity,
the main issue with these metrics is that they do not provide any details about
the root causes of process dissimilarity. Accordingly, it is difficult to apply these
metrics for cluster characterization.

4.7.3 A Rule Set Approach

Since there does not exist a clear strategy on how to compare process models and
thus interpreting the result of a trace clustering solution, a distinctive approach
is proposed. We therefore employ reverse engineering of a typical trace clustering
approach as employed by Greco et al. [66] and Song et al. [120]. Their clustering
technique relies on the construction of a vector space model based on activities
and activity transitions. By applying this same vector space model but with the
cluster as a dependent variable, it is possible to apply a rule learner such as
RIPPER [30].

By applying RIPPER, a comprehensible set of rules can be learned based on
activities and activity transitions that explains to some extent how trace clusters
and thus the respective process models differ. Since the observations are vectors
corresponding to the distinct process instances, there is an important problem
of class imbalance. This is because the different trace clusters will often differ in
terms of the number of distinct process instances. In order to resolve this issue,
we applied an oversampling method that involves the replication of observations
in order to balance the number of observations over a set of trace clusters. In this
way, majority class predictions are avoided so that more useful results are derived
from RIPPER.

It is recognized that other researchers have investigated the use of rules within
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the domain of process mining. For instance, Rozinat et al. [113] show how decision
trees can be used for discovering rules that discriminate between possible actions
at the decision points in a certain process model. Furthermore, Liu [86] describe
a case study where rule learning techniques are employed to find patterns that
discriminate between succeeded and failed process instances. This approach is
implemented in ProM as the Signature Discovery plugin.

Results. In Figure 4.9, the results are shown of the outlined approach being
applied to event log KIM with the maximal amount of clusters set to four. The
plot shows the percentage of correctly classified distinct process instances given a
certain number of rules for different ActiTraC variants, standard MRA-based clus-
tering and clustering based on activities and activity transitions. The latter clus-
tering algorithm is denoted BOA/AT. Note that in this case, four variants of Ac-
tiTraC are inspected by also varying the option to distribute the remaining traces
over existing clusters. Accordingly ActiTraCfreq denotes the frequency-based al-
gorithm without redistribution of remaining traces and ActiTraCfreq+ denotes the
case with redistribution. In turn ActiTraCMRA denotes MRA-based selective sam-
pling without redistribution while ActiTraCMRA+ denotes MRA-based selective
sampling with redistribution.

In general, it can be concluded that the approach is able to explain trace clus-
ters with relatively good accuracy. Note that the accuracy is calculated based on
the non-oversampled data set. In Figure 4.10, an example RIPPER rule set is
given with a single character representing an activity and double character com-
bination representing an activity transition. Furthermore, Figure 4.10 also shows
some interesting results in terms of comparing the different ActiTraC variants.
For instance, it can be concluded that the redistribution of remaining traces no-
ticeably complicates the interpretation of the trace clusters by RIPPER rules. A
more counterintuitive result is that the MRA-variants have a tendency to create
clusters that are slightly more difficult to interpret given the choice to only make
use of activities and activity transitions. Probably, this is due to the fact that
MRA employs more complex contexts of execution to create the set of attributes
that are used for calculating the distances between traces. This is confirmed by the
fact that the original MRA-based agglomerative hierarchical clustering technique
underperforms as well. Note that this observation contrasts with the complexity
results in Section 4.5.3 where the Average Place/Transition Connection Degree
was used to assess the complexity of the underlying process models.

As a final remark, it is pointed out that the outlined cluster characterization
approach presents some shortcomings as well. Firstly, by making use of rule sets,
it might not always be possible to characterize trace clusters, especially in case
of large and complex event logs. Furthermore, the proposed approach only takes
into account presence of a single activity and succession of two activities as at-
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tributes for rule learning. It can be expected that the inclusion of other attributes
might further improve this methodology. For instance, the use the entire range
of DECLARE templates (see [87]) has the potential to boost the performance of
rule learning for cluster characterization.

4.8 Conclusion
In this chapter, we have proposed a new approach to trace clustering. Trace clus-
tering is one possible strategy to resolve the problem that currently available
process discovery algorithms are unable to discover accurate and comprehensible
process models out of event logs stemming from highly flexible environments. The
technique, called ActiTraC, has its foundations in the observation that currently
available trace clustering algorithms suffer from a severe divergence between the
clustering bias and the evaluation bias. This problem is resolved with an active
learning inspired approach that centers on optimizing the combined process model
accuracy. In the experimental evaluation, both artificial as well as real-life event
logs were used to show that ActiTraC, even without optimization of its param-
eters, significantly improves the accuracy and complexity of the process models
underlying the discovered trace clusters as compared to existing trace clustering
techniques.
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Chapter 5
Case Studies

In this chapter, three real-life case studies are presented that further validate the
work in the previous chapters. The first study is situated in the financial services
industry with the primary objective of this study being a demonstration of the
applicability and usefulness of process mining in a large scale service company. A
second case study presents the analysis of an event log containing clinical path-
way data from a healthcare process. Herewith, it is shown how the analysis of
low-granular event data can be embarked on. Furthermore, the use of network
visualizations is shown to be an interesting approach for knowledge discovery and
knowledge representation. Finally, the third case presents an application study
of ActiTraC in which trace clustering is combined with text mining and decision
tree learning so as to characterize deviating process behavior. For this last case
study, data from the ICTS helpdesk from the KU Leuven has been used.

115
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5.1 Process Mining for the Multi-Faceted Anal-
ysis of Business Processes: A Case Study in
a Financial Services Organization

These days it is impossible for an organization to operate without some sort of
enterprise information system. During the last decades, information systems (IS)
have transformed from simple systems with limited functionality to complex, in-
tegrated architectures. As a result, it becomes harder to understand and monitor
how these systems impact the execution of every-day processes in organizations.
Process Mining [135] offers a solution based on the extraction, analysis, diagnosis
and visualization of the data recorded by an IS during process execution. Although
in the past, major contributions to the process mining literature were predomi-
nantly technical in nature, techniques have proved their usefulness in practice as
well. Nevertheless, application-oriented studies have only received modest atten-
tion and therefore, this study demonstrates the benefits and challenges of applying
process mining techniques in practice by a multi-faceted analysis of business pro-
cesses within the back office of a Belgian insurance company.

Process Mining goes beyond the capabilities of traditional business intelligence
tools [64] with respect to process analysis. Accordingly, it can be considered as
a proficient means for helping organizations understanding their actual way of
working and thereby serving as a foundation for process improvement. This is
mainly due to the fact that the cornerstone of Process Mining is real data that
comprises how business operations are actually carried out in an organization.
This is significantly different from other approaches to process improvement, for
instance relying on interviews with key stakeholders.

Based on existing literature and our own experiences, a methodology frame-
work is described, which structures the process mining study in a financial services
organization. This framework is similar to earlier works [19, 105], however it puts
an emphasis on data extraction and exploration as well as on the multi-faceted na-
ture of analyzing process execution data. Furthermore, this study clarifies benefits
as well as challenges of conducting a real-life process mining study. For instance,
the study points out the importance of intensive two-way communication between
process analysts and organization’s experts and management.

Accordingly the description of this study is structured as follows. First we
outline earlier real-life process mining case studies in Section 5.1.1. Then Section
5.1.2 elaborates on the followed research methodology which is applied within a
financial services organization in Section 5.1.3. Finally, we formulate conclusions
in Section 5.1.4.
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5.1.1 Related Work

In the literature, contributions to the process mining field are most often theo-
retical in nature, with a large dominance of studies related to the development of
knowledge discovery techniques [10, 32, 67, 126, 127, 131, 139]. Only few articles
on practical applications have emerged in the last decade. Our work complements
the theoretical approaches and integrates different perspectives to search for in-
efficiencies within organizations. Our findings are validated with a case study in
which several existing process mining techniques are applied to a data set orig-
inating from the back office process of a financial services company. Although
practical process mining cases in the literature are rare, real-life applications are
essential to prove the usefulness of Process Mining in practice. Ten relevant pa-
pers are listed in Table 5.1 where Process Mining is used as a practical tool to
help organizations understand their business.

The first real process mining application study was described by van der Aalst
et al. [127]. The authors verify the applicability of existing process mining tech-
niques in a real-life industrial case. The purpose of this study is similar to ours in
the sense that a real-life event log is analyzed according to the process, organiza-
tional and data perspective. This study had a revolutionary character since at the
time it was published, similar things had never been tested before. It was shown
that Process Mining techniques are a feasible approach for analyzing business
processes, although some limitations were pointed out. Foremost, only the actu-
ally logged events can be used for analysis as well as the fact that privacy issues
might restrict the possible outcomes of a process mining analysis. In contrast to
[127], the most promising application areas of Process Mining are situated within
the services industry. This is mainly due to the fact that the strengths of Process
Mining lies in the analysis of human-centric behavior which typically results in
higher levels of deviations, exceptions etc.

A first domain for which several case studies are present is public services.
Alves de Medeiros et al. [10] took an interest in four processes from Dutch mu-
nicipalities to test the robustness of the Genetic Miner algorithm. Song and van
der Aalst change the focus of analysis towards organizational aspects in [121].
Also in this study, a municipality process is used for demonstrating the practical
application of the proposed techniques.

Rozinat et al. [112] conducted two more studies in the public services domain.
Both studies focus on the discovery and quality of simulation models. In their
analyses, theoretical concepts of process mining techniques are tested on a real-
life event log, integrating multiple perspectives into a comprehensive simulation
model. In our work we use the different perspectives to search for inefficiencies
in each dimension instead of merging the three perspectives into one discovered
simulation model as done by Rozinat et al. The last two real-life case studies
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performed in this domain are presented in the research of van der Aalst et al. [140].
This paper introduces a new approach to the current process mining techniques.
The discovered process models are used as an extension to forecast the completion
time of running instances. In both real-life cases the data is split up fifty-fifty to a
learning set and test set with the main focus on the quality of the time predictions.

Also in the private sector, the applicability of process mining techniques has
been studied. Goedertier et al. [62] apply different process discovery techniques
within the telecom industry. It was found that applying these techniques to the
highly flexible process at hand created severe challenges for both knowledge dis-
covery as well as knowledge evaluation. Since this study entails an extensive em-
pirical evaluation, it can be considered as a key contribution to the literature on
applying Process Mining to real-life data.

Furthermore, the healthcare industry can benefit a lot from Process Mining
as well. Mans et al. [89] and Rebuge and Ferreira and [105] demonstrate how
process mining can be applied to complex care pathways. Their results reveal the
possibility of uncovering understandable models from large groups of patients in
order to track deviations from guidelines.

A somewhat rare application in a manufacturing context is presented by Rozi-
nat et al. [110]. The study focuses on the conformance aspect in the wafer scanner
industry. The paper points out that in today’s processes vital information is miss-
ing for compliance purposes, but that in the future more audit data will be avail-
able. This observation is further explored by [76]. In this study, it is shown that
internal fraud can be investigated by making use of process mining techniques
such as the LTL-checker in ProM1. Finally, van der Aalst et al. [142] used Process
Mining to explore the process model and business rules that are the subject of an
auditing task. A disadvantage of this paper is that it predominantly focuses on
the theoretical side as compared to practical implications.

In conclusion, this section shows that Process Mining can be successfully ap-
plied in a wide variety of practical situations. However, there are still a lot of
unexplored paths and the need for more real-life case studies providing evidence
for the effectiveness of Process Mining is obvious.

5.1.2 A Methodological Framework for applying Process
Mining in Practice

The objective of this case study is to demonstrate the usefulness of Process Min-
ing in practice and as such to provide a suggestion on how Process Mining can be
applied in real-life. It has been found that many of the proposed algorithms have
difficulties in dealing with real-life event logs since these logs typically exhibit
much less structured process behavior [62, 68, 149]. Today, this remains one of

1http://www.promtools.org/prom5/
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the most important challenges for process mining research. As such, so as to apply
process mining techniques in practice, guidelines should be put forward on how
to conduct such a case study. Accordingly, this study proposes a methodology
framework in line with earlier works [19, 105]. Our Process Mining Methodology
Framework (PMMF), as depicted in Figure 5.1, emphasizes the early phases in
such an analysis, i.e. data preparation and exploration. Furthermore, our frame-
work acknowledges the multi-faceted analysis that is often required, especially
when analyzing highly flexible business processes where the underlying informa-
tion system allows a lot of freedom to its users. Because of this flexibility, it is
typically found that the logged data is less structured and much more difficult to
analyze. The demonstration of the application of our framework in Section 5.1.3
can help process miners to overcome different issues encountered during a process
mining analysis.

Data extraction

Process data exploration

Preprocessing

Control-flow perspective Organizational perspectiveCase data perspective

Compliance Performance

Process improvement

Preparation

Analysis

Result

Exploration

Discovery Analysis

Profound Analysis

Figure 5.1: The Process Mining Methodology Framework

The framework consists of four major building blocks: preparation, explo-
ration, analysis and results. Before any analyses can be performed, data must
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be collected and prepared. The first component in the preparation phase is the
data extraction part. A first challenge crops up when the process scope and the
time frame are to be determined. The goal is to extract data from the bulk of
information stored in the system that is relevant for the analysis. There is a clear
trade-off between a too wide and a too narrow process scope. When too much data
is extracted two or more processes can get mixed up, giving a process model that
is hard to interpret. If less data is incorporated in the analysis, a straightforward
interpretation can be obtained, but the danger of missing part of the knowledge
increases. The problem of scope determination also turns up in the time dimen-
sion. A time frame that is too wide can cause an overflow of data, causing existing
process mining techniques requiring large computation times and often resulting
in incomprehensible results. On the other hand, if the process fluctuates strongly
because of seasonality for example, a small time frame may not be long enough
to include such patterns. Overall, process scope and time frame definition are
highly industry dependent but once the appropriate settings are agreed upon,
effective preprocessing can begin by converting the data into a workable format
for analysis.

The next phase is process data exploration, where a first impression of the
data is gathered. For this purpose, a lot of statistical information can be assessed.
Also, with the availability of different control-flow mining algorithms, a number of
initial visualizations of the process can be obtained. Relying on these exploration
steps, business experts can iteratively improve the process scope and time frame
in order to ensure that the input data is suitable for further analysis. The feedback
loop for the adjustment of both process scope and time frame is imperative and
therefore explicitly depicted in Figure 5.1.

After agreeing upon a satisfactory data set according to time and scope, a
more profound analysis can be initiated. The analysis phase is subdivided into
two major segments: the basic discovery analysis and the more detailed compliance
and performance analysis. In the discovery phase, we distinguish a control-flow,
an organizational and a case data perspective on the data. The control-flow per-
spective includes the analysis of activity sequences within the business process.
Furthermore, the data can be explored from an organizational point of view, for
instance by investigating the teams involved in the process. Finally, it is often
valuable to explore the underlying data elements of process executions in order
to discover particular patterns.

Typically, a discovery analysis will highlight different points of interest for
which a more profound assessment is appropriate. The PMMF considers two dif-
ferent types of profound analyses: performance and compliance analysis. In the
case study presented below, management was mainly interested in case through-
put times. On the one hand, performance analysis can be carried out in general for
the whole set of process executions. On the other hand, it is typically worthwhile
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to explore performance in more detail. Subsets of traces are then investigated in
order to examine the impact of control-flow or other characteristics of these pro-
cess executions. The profound analysis also consists of compliance analyses which
can be of interest to the organization. Compliance verification is about validat-
ing whether the reality is consistent with expected or required process behavior.
In Section 5.1.3, compliance issues are thoroughly investigated because process
inefficiencies coincided with deviating behavior with respect to management’s ex-
pectations.

Finally, the result phase is the closing stage of the PMMF. The outcome of
the analyses will be a valuable starting point for process improvement or even
process reengineering steps in order to optimize the business process at hand.
Management can define new goals and measurements based on the new insights
obtained with Process Mining in order to resolve for instance identified process
inefficiencies.

5.1.3 Case Study

With the purpose of this study being the demonstration of the usefulness of pro-
cess mining analyses in practice, we describe a case in the financial services indus-
try. This industry is of main interest for Process Mining since there exist plenty
of human-centric business processes for which the analysis of event logs proves
especially worthwhile. The case at hand involves a large Belgian insurance com-
pany. Products include life and non-life insurances and retirement savings, which
are mainly offered through a large network of brokers.

Context

The core information system underlying the insurance company’s back office can
be best described as a Document Management System (DMS). As soon as a
physical document arrives at the company, being an e-mail, a claim, an application
offer, etc., it is digitalized and added to the DMS. Each document receives a
document ID and document type before it is sent to a team for further processing.
From then on, the system keeps track of every step taken during the document’s
life cycle by recording which actions were taken by which team at which moment
in time. These data are the cornerstone for the process mining case study outlined
below.

Although plenty of process-related information is available, the company had
no clear idea of how the back office processes actually look like, nor could it
provide accurate performance estimations for the different document types. In
the next section the process of finding the answers to these questions using the
Process Mining Methodology Framework is explained.
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Data preparation and exploration

The first crucial phase in any process mining analysis consists of preparation
and exploration of the available process data. All the event information needed
to conduct a process mining analysis was present in the DMS of the company.
In a first phase, these data were extracted from the DMS and converted into a
standard event log storage format, in this case MXML.

Process data exploration and scope adjustment. In a next step, the ex-
tracted data was imported into the analysis tool ProM, where an early inspection
could start. A major challenge encountered was the substantial size of the data set
causing difficulties for both data processing and data analysis. A first important
reason why the data was difficult to work with was the absence of almost any re-
striction on the possible execution paths within the system. It was found that the
DMS was nowhere near the more structured process behavior typically found in
for example BPMSs. Due to the unlimited number of possible process executions,
any typical control-flow process model rendered incomprehensible. As a conse-
quence, it proved very difficult to mark out the boundaries of the process under
investigation in the larger DMS. Therefore, the data scope had to be fine-tuned
multiple times, going through the scope adjustment loop after each inspection,
until a satisfactory data set was obtained.

In consultation with the insurance company’s management, the final event
log consisted of the execution paths of all the proposals dealt with in a six-month
period. Because of the typicality of the data extracted from the DMS, it turned out
that the event data could be decoupled into three different event logs according to
three different information perspectives. The first log corresponded to the control-
flow, where each case (being a document) followed a certain sequence of activities.
A second log was constituted from a performer viewpoint: each case now followed
a certain sequence of teams. More specifically, each event corresponds to a change
of hands, so that each time a document was forwarded, that event was included.
The last log was composed from a case data view based on the attribute document
type. This was useful, since an incoming document receives a preliminary type,
which can be further specified or changed during its life time. In the same way as
the former log, the document type flow can be tracked per process execution.

The construction of multiple event logs from the same data set according
to three different perspectives resulted in an atypical way of working. Usually, an
event log is centered on capturing control-flow activity events which are performed
by a certain originator and to which a number of case data elements can be added.
All three analysis perspectives can be investigated by analyzing this single event
log. However, in this case we constructed three different event logs according to
the different perspectives. The reason why we followed a different strategy stems
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from both the specificity of the data and the expectations of the organization’s
executives. After several discussions, it appeared that both the team flow and
the document type flow represented the business process best. Accordingly, it
appeared valuable to make available control-flow mining techniques with respect
to the teams and the document types.

Discovery analysis

According to the methodological framework, the three discerned event logs are
firstly analyzed in an exploratory way in order to find interesting observations for
further analysis.

Control-flow event log: business activities. The control-flow based event
log contained a total of 44.880 cases (documents) with fifteen real business activi-
ties. A discovery analysis typically starts with the visualization of the underlying
process model. The visualization for this event log is strongly complicated by the
fact that the event log consists of 4.494 distinct process executions (DPI), as illus-
trated in Table 5.2. The complexity is even further emphasized by the fact that
3.345 instances are unique activity sequences.

One method to limit the variety in process behavior is to narrow the scope
to more frequent demeanor. For this case study the log was filtered based on
process instance frequencies. A process instance frequency is interpreted as the
number of times a same sequence of activities is traversed by different process
instances. Applying a frequency threshold of fifty, a total 34.769 cases or 77, 47%
of all cases were withheld. On this filtered data set, HeuristicsMiner [153] was
performed in order to visualize the process as in Figure 5.2. This process model
covers 667 frequent process executions. Accordingly, this model only conforms
to mainstream behavior and thus excludes exceptions and infrequent cases that
might be interesting as well.

From a business perspective, no particular conclusions can be drawn from the
control-flow analysis. Although the analysis indicates a strong behavioral freedom
accorded by the information system, this freedom is often necessary and efficient.
More stringent conditions on possible activity sequences might be introduced
in order to reduce the level of self-determination of the users, but there is no
guarantee that the process itself could be improved significantly in this way. In
order to tune the analysis to business interests, the attention shifted to features
business users work with on a daily basis: documents and other teams. In next
paragraphs the corresponding perspectives are explored.

Organizational event log: team routing. The process data can also be ex-
amined from an organizational perspective, where a flow represents the sequence
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Figure 5.2: Visualization of the heuristics net for the control-flow log with a fre-
quency threshold of 50
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of teams that worked on the same document. A first attempt to visualize the team
flows resulted in a completely incomprehensible model. It reflected the complex-
ity of the data in the log: 1.222 different paths could be followed by 59 teams,
represented by 498 arcs in the heuristic net (see Table 5.2). To allow for the ex-
traction of useful knowledge from the log, the amount of team paths needed to be
reduced in a similar fashion as described in Section 5.1.3. Focusing on frequent
behavior, a general view on how teams were interconnected could be obtained. In
a similar fashion as with the control-flow perspective the event log was filtered
for team paths that were traversed by at least fifty different document instances.
The result was an involvement of only 30 teams in 77 possible paths presented
by the heuristic net in Figure 5.3. Although this might imply a drastic cut in the
data, the opposite appeared to be true: more than ninety percent of all the log
traces were retained after filtering.

Looking more closely at the team flow process model, it can be pointed out that
there are three teams operating on cases more than 10.000 times: In, Central and
A1. First of all, the In-team received part of the incoming mail and forwarded the
documents to a specific team for further processing. If there was confusion about
which team was next, the document was sent to the Central-team. This team,
involved 15.415 times in the flow, was responsible for those forwarded mails and
for most other incoming documents. It acted as a central administration point and
firstly defined the document type. Afterwards the documents were forwarded to
a team specialized in the document type at hand. When a document was wrongly
forwarded, most likely the other team sent it back. A last team that had a high
involvement (10.025 times) was the A1-team which was mainly due to the fact
that this team could treat multiple document types.

By discussing these initial findings with the business users, a first possible
inefficiency was identified. Several teams stated that they were burdened by reit-
erated handovers, being documents that were sent back and forth between teams.
Since this issue was confirmed by our analysis (see Figure 5.3), this behavior is
further investigated in Section 5.1.3.

Case data event log: document types. Finally, an exploratory analysis of
the document types was carried out. As such, we investigated the sequences of the
document type changes. Due to the infeasibility of displaying the model for the
complete event log, a filter was applied similar to former perspectives to visualize
only frequent document paths.

The results of the filtering were striking since the number of document types
decreased from 189 to only 22 and the total of different possible paths declined
from 2.027 to 41. This signifies that the filtering method applied was highly pro-
ficient in separating frequent and infrequent behavior. This is confirmed by the
fact that almost 90 percent of the logged data formed the input for the resulting
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process model in Figure 5.4. So even though the system exhibits a large amount
of freedom, a large amount of behavior is captured by a small amount of possible
document type sequences. This emphasizes the relevance of analyzing the most
frequent document paths.

An analysis of the discovered model highlighted the issue of wrong document
classification. For instance, certain documents change from a private proposal
to a business proposal or vice versa. In consultation with business experts, this
problem was considered for more profound analysis.

Profound analysis: tracking process inefficiencies

In the profound analysis, the investigation was taken a step further, digging deeper
into the data to come up with interesting insights. Because of the main focus on
performance in terms of throughput time, it was decided to create a benchmark
event log to better judge unwanted process behavior.

Performance analysis: creating a benchmark. In order to assess the im-
pact of the compliance issues explained in the next sections, a benchmark log
was created first. It represents standard behavior corresponding to very frequent,
normal process executions. The analysis started from the document perspective
since this was the most intuitive view for management. Former conditions were
fulfilled when looking at the six most occurring document flows depicted in Figure
5.5. After isolating the instance IDs corresponding to these conventional paths,
the corresponding documents were also retained in the other two perspectives.
Questions such as “which teams treated those documents?” and “what business
activities are usually performed in a standard process?” were answered.

The histogram in Figure 5.6a displays the throughput time distribution of
the benchmark event log. The x-axis depicts the throughput time, calculated in
working days of nine hours. On the vertical axis the frequency in number of
instances is shown. The mean time a document resided in the system before it
was terminated is 8,26 working days, with a standard deviation of 8,5 days. In the
final analysis sections, we will employ the characteristics of this benchmark event
log as a point of reference to evaluate bottlenecks and other process inefficiencies.

Compliance analysis. Verifying compliance is an important step towards pro-
cess improvement. Compliance can be assessed by verifying strictly defined rules
and regulations, but also by contrasting management’s expectations with the ac-
tual process behavior. Both types of compliance analysis feature in this section.
Firstly, a formal analysis was executed based on a business rule concerning docu-
ment classification. Next a more informal analysis looked at whether management
expectations in terms of reiterated team handover were confirmed.
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Figure 5.5: Visualization (heuristics net) of the six most frequent document type
sequences
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Wrong document classification. An example of a business rule in the
insurance company’s back office is the requirement that certain document types
were not allowed to appear in the same document type sequence. However, the
data contained several violations against this rule. Often, documents were orig-
inally classified as a business proposal but later on in the process rectified to a
private proposal or the other way around. Note that due to the application of
thresholds by the HeuristicsMiner algorithm, misclassification paths are not di-
rectly detectable in the process model in Figure 5.4. To this, it should be added
that some paths are present in the model but difficult to identify because of the
use of (hidden) AND-splits. This feature makes a heuristic net not straightfor-
ward to interpret by business users and makes the discovered process models less
appropriate for discussion with organization executives. This is also confirmed by
Mendling et al. [93] who investigate the influence factors of process model under-
standability. Better visualization techniques are therefore requisite to avoid wrong
interpretations and improve the understandability for business users.

To estimate the impact of this inefficiency, all document type traces in which
both a private proposal and a business proposal occurred, were filtered out. There
appeared to be 1.422 cases in the data fulfilling this condition. After conducting a
performance analysis on traces with one or more wrong document classifications,
it was shown that it took on average 7,41 working days longer to complete such
a document as compared to a normal trace (Figure 5.6b). This is a significant
difference, especially because other faulty document type reclassifications reside
in the process as well. Since a similar throughput time problem can be expected,
improvement actions seem indispensable in this area. As such, the analyses can
provide important decision support in order to shape a process reengineering plan.

Reiterated team handover. At the insurance company, teams complained
about a high amount of documents that were forwarded and then sent back to
the sender. It was observed that in 841 cases, reiterated handover between teams
existed. Therefore, we decided to investigate the influence on the efficiency of the
process in terms of throughput time. In order to separate process executions with
repeated forwarding, the analysis started from the organizational log. By using
the LTL-checker in ProM, we were able to identify and separate those process
executions for which a particular team appeared more than once. An example of
this reiterated handover between teams is shown on the right-hand side of Figure
5.3 for the teams Control and A1.

Afterwards, the performance information for all combined reiterated handover
cases was looked at. Our presumption was confirmed: a reiterated handover trace
endured longer in comparison with standard behavior (Figure 5.6c). On average,
it took twice as long as a normal execution path (17 hours compared to 8 hours),
even worse than the document classification problem. Although this behavior
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Figure 5.6: Histograms showing performance problems related to document mis-
classification and reiterated handover
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Figure 5.6: Histograms showing performance problems related to document mis-
classification and reiterated handover

represents only 2 percent of the log, it can be interesting to look at the cause of
this behavior, since it impacts the throughput in a very negative way.

Results: process improvement measures

Ultimately, the results of the case study were considered remarkable by the orga-
nization’s management. By contrasting actual behavior as registered in the logged
data with expectations and requirements, different insights and guidelines for pro-
cess improvement could be formulated. Firstly, we observed that the quality of a
process mining study can only be as good as the quality of the input data. For
instance, clear verb-object names for denoting activities prove very helpful for
interpretation of the data. Furthermore, for enhanced performance analysis, both
start and end timestamps of activities should be kept track of. According to these
findings, a number of recommendations were proposed to improve and guarantee
data quality.

Secondly, the opportunity to work out a business case for the introduction of
OCR (Optical Character Recognition) technology was identified. Since the docu-
ment misclassification appeared to be an important source of process inefficiency,
OCR might resolve this issue. By improving this manual process to a fully au-
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tomated scanning and classification process where the type of the document is
recognized based on keywords, significant process performance gains can be ex-
pected.

Finally, the exposure of multiple inefficiencies offers a great opportunity for
management to make employees aware of them and improve the business process
by better training and guidance. For instance, the downside of frequent reiterated
handover could be emphasized in order to reduce process inefficiency.

5.1.4 Conclusion

In this study we addressed the issue of the applicability of Process Mining in
real-life environments. We acknowledge the importance of applied process min-
ing studies, especially since their conclusions differ strongly from the important
work that has been done on the theoretical side. However, the related work sec-
tion indicates that the issue of applying process mining techniques in practice
should receive more attention, also in academic literature. Accordingly, we pro-
vide a methodology framework structuring the process of a real-life analysis and
illustrate its usefulness in a multi-faceted case study, situated in the financial
services industry. The starting point of analysis was process data extracted from
a Document Management System as implemented by a large Belgian insurance
company to support its back office processes.

Our case study shows that an important element of process mining analysis is
the data preparation and data exploration part. More specifically, the information
feedback loop between process analysts and business experts proves to be a critical
success factor. This two-way communication is essential to discover useful busi-
ness insights based on the mathematical techniques of the process mining field.
Accordingly, the feedback loop allows for improvement of both the process scope
and the quality of the data. A second observation is the usefulness of combining
several perspectives to get a fuller understanding of the process, which is entirely
captured by the third phase of our methodological framework. First a discovery
analysis can indicate what perspectives are interesting from a management point
of view. This enables a more focused and more valuable scope for further analysis.
Secondly the integration of several perspectives in an innovative way exploits the
capability of searching inefficiencies instead of solely discovering process models.
Subsequently, based on the outcomes of our analysis, it is found that Process
Mining can be an effective and efficient technique to deal with organizational
challenges. Moreover, a process mining analysis on real-life event logs can be the
starting point for the involved management to formulate specific measures to im-
prove the business processes. Another conclusion is the applicability of process
mining techniques on structured and less structured information systems. In the
case of a less process-based information system such as a Document Management
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System, Process Mining allows to obtain a model of the actual process based
on the data in the event log. Process Mining proves especially useful to contrast
expected behavior with actual behavior as reflected in the data. Since more flexi-
bility is an important characteristic of information systems that are process-aware
but not entirely process-based, Process Mining is an ideal means to discover how
the system is used and where process inefficiencies should be countered.

Furthermore, the case study uncovers several limitations of the application of
currently available process mining techniques on real-life data. First of all, the
greatest strength of Process Mining, its reliance on the actual data, is a weakness
as well. Today, in many organizations, logging infrastructures are imperfect and
business activities executed outside the system cannot be taken into account for
analysis. Also, process analysts must rely on the quality of delivered input data.
Profoundness and correctness of results are greatly determined by the quality
of the process data. Secondly, process mining techniques still struggle with sub-
stantial amounts of unstructured data. Highly complex processes, which can be
expected in highly flexible environments such as financial services back offices, are
a definite challenge. As explained in this study, the use of relevant filters can be a
solution to extract important knowledge from such event logs. However, we think
that future research in this area is required to enhance and adapt process mining
techniques to real-life environments.
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5.2 Getting a Grasp on Clinical Pathway Data:
An Approach Based on Process Mining

Since healthcare processes are pre-eminently heterogeneous and multi-disciplinary,
information systems supporting these processes face important challenges in terms
of design, implementation and diagnosis. Nonetheless, streamlining clinical path-
ways with the purpose of delivering high quality care while at the same time
reducing costs is a promising goal. In this case study, we propose a methodol-
ogy founded on process mining for intelligent analysis of clinical pathway data.
Process mining can be considered a valuable approach to obtain a better un-
derstanding about the actual way of working in human-centric processes such as
clinical pathways by investigating the event data as recorded in healthcare infor-
mation systems. However, capturing tangible knowledge from clinical processes
with their ad hoc and complex nature proves difficult.

5.2.1 Introduction

Worldwide, the healthcare sector goes through a major reform. This has many
reasons. First, the costs of healthcare are rising up to 15% in the United States
(US) and close to 10% in Europe [101]. This is due to the increasing needs of a
greying population, but also due to technological and pharmacological innovations
that are really widening the possibilities for diagnosis and treatment. Second,
there is a shift in the role of patients, going from a more passive role into a
role of active consumers of care. Patients want to be informed and involved.
Third, there is growing attention to quality and safety. The main drive comes
from the to err is human report from the Institute of Medicine2 [78]. This report
indicated that as many as 44.000 to 98.000 US citizens die in hospitals each year
as the result of medical errors. Even using the lower estimate, this would make
medical errors the eighth leading cause of death in the US - higher than motor
vehicle accidents (43.458), breast cancer (42.297) or AIDS (16.516). The report
was publicly discussed in the Senate and was the start of an overall hospital
reform. Most important in the discussion is that people are not blamed - to err
is human indeed - but that the focus should be on improving the system.

An excellent way to do this is learning from past experience. Currently, it
can be observed that with the growing implementation of integrated healthcare
information systems, vast amounts of data are becoming available about the actual
way of working in clinical pathways. These data form the cornerstone of this study.
Accordingly, the notion of a clinical pathway is a crucial element. The terminology
has its origins in methodologies such as PERT (Project Evaluation and Review

2http://www.iom.edu
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Technique) and CPM (Critical Path Method), but transformed into “clinical”
instead of “critical” pathways because of the very specific nature of healthcare.
When clinical pathways were developed in the mid eighties, their major focus was
on reducing the length of stay (LOS) of patients. The first systematic use was
found in the New England Medical Center in Boston (USA) in 1985 as a response
to the introduction of Diagnosis Related Groups (DRGs) in 1983. The actual
focus is mainly on improving the quality of care. Clinical pathways are formally
defined as schedules of medical and nursing procedures, including diagnostic tests,
medications and consultations, designed to effect an efficient, coordinated program
of treatment by the National Library of Medicine [99], which is a very narrow
definition. The European Pathway Association3 broadened this definition to a
complex intervention for the mutual decision making and organization of care for
a well-defined group of patients during a well-defined period.

In this study, we propose an approach for deriving useful insights from clinical
pathway data by making use of process mining techniques. The main contribu-
tion of this study is the development of solution strategies for dealing with the
extremely unstructured nature of clinical pathway data.

5.2.2 Process Management in Healthcare Organizations
Before elaborating on the data set and the analysis methodology, the research is
situated in the context of its related work.

Process Aware Healthcare Information Systems

A fair share of information systems implemented in healthcare organizations can
be described as process aware. This is because process aware information systems
not only encompass traditional workflow management systems, but also include
systems that provide much more flexibility. Accordingly, once an information sys-
tem can be described as having an explicit notion of the process it supports, it can
be described as process aware [48]. A such, many healthcare information systems
fit within this definition. Since clinical pathways are inherently heterogeneous and
multi-disciplinary in nature, the goal of IT support for healthcare processes is not
to control the course of the process entirely, but to assist healthcare professionals
by reducing cognitive overload and improving the basis for their decisions [84]. In
this way, process orientation can be considered as a beneficial approach towards
streamlining clinical pathways with the purpose of delivering high quality care
while at the same time reducing costs [12]. While business process support for
structured processes (e.g. manufacturing, logistics) has always been an important
research topic, the growing importance of service organizations such as healthcare

3http://www.e-p-a.org
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has triggered the need for different approaches towards business process support
[83, 106]. Because of the human-centric nature of such processes, they contain
much more flexibility, alternative routings, loops, human judgement and variabil-
ity than traditional business processes. Accordingly, the analysis of the actual way
of working by making use of the data captured by healthcare information systems
is promising. However, traditional business process analysis techniques come short
in realizing this goal and therefore a novel analysis methodology based on process
mining is proposed.

Process Mining in Healthcare

Process mining techniques have been applied in a healthcare context. A first
study by Mans et al. [89] shows how different process mining techniques such
as HeuristicsMiner, social network analysis and dotted chart analysis allow for
obtaining insights into care flow data. Another study by Rebuge and Ferreira [105]
also describes a methodology for the analysis of business processes in a healthcare
environment. The methodology consists of seven phases with its main asset being
the application of sequence clustering techniques. Further, Bose and van der Aalst
[17] propose the use of fuzzy mining and trace alignment for investigating clinical
pathway data. Finally, Caron et al. [28] demonstrate the applicability of various
process mining techniques to healthcare data by adopting both a department and
a treatment based focus. Our study differs from previous studies because it shows
the benefits of both a drill up and a drill down perspective on the data relying on
control-flow discovery with the Fuzzy Miner and networked graph visualizations.

5.2.3 Description of the Clinical Pathway Data
The data set concerns real data of a gynecological oncology process at the AMC
hospital in Amsterdam, The Netherlands. It was first used in [89], but recently the
data set was made publicly available (doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-
0d1120ffcf54) for the first Business Process Intelligence Challenge (BPIC’11). The
data contains 150.291 events of 1.143 patient treatment processes related to in-
dividuals diagnosed with cancer pertaining to the cervix, vulva, uterus and/or
ovary. Each case in the event log corresponds to a single patient and as such, the
data presents a wide variety of care activity sequences. In the remainder of this
section, the three most important dimensions of the data are outlined.

Diagnosis. Each case in the data set contains information on the type of disease
the patient is diagnosed with. The related attributes are denoted Diagnosis code
and Diagnosis. The data presents a total of eleven different diagnosis codes (e.g.
M11, M12, 823, etc.). Diagnosis is a textual description which specifies the diagno-
sis code, taking values such as “adenocarcinoma stage Ia” or “clear cell carcinoma”.
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It should be noted that the data contains up to 16 diagnosis code - diagnosis com-
binations for a single patient (denoted as diagnosis code:1 to 16 ). Accordingly, a
single case might contain different codes. We observe 38 distinct diagnosis code
combinations, for instance {M16, 821}. Table 5.4 presents an overview of the di-
agnosis codes detailing the region, example diagnoses and the number of cases
showing this diagnosis code.

Treatment. Next to diagnosis information, one can also find details concerning
the treatments of each of the patients. However, in contrast to diagnosis, the
data only provides a treatment code and no further information. As such, the
treatment perspective is more difficult to analyze. On top of this, there exist 46
distinct treatment codes which form 236 distinct treatment code combinations in
similar fashion as the diagnosis code combinations.

Departments. The final important data dimension is organizational in nature,
i.e. the departments that are involved in the clinical pathways. Each event in
the log contains an attribute “org:group” which denotes the department where
the corresponding activity was performed. In the data, one can find 43 distinct
organizational units. The most frequently observed departments are depicted in
Table 5.5.

Table 5.5: Number of events pertaining to organizational units by frequency

Organizational unit # events
General Lab Clinical Chemistry 94917

Nursing ward 31066
Obstetrics & Gynaecology clinic 7065

Medical Microbiology 4170
Radiology 3171

Radiotherapy 2233
Internal Specialisms clinic 2146

Pathology 1975
Operating rooms 942

Pharmacy Laboratory 498
Recovery room / high care 495

Nuclear Medicine 281
Special lab radiology 279

. . . . . .

A very specific feature of the data is that events pertaining to certain depart-
ments occur in bursts. For instance, sets of blood diagnosis tests performed by the
General Lab Clinical Chemistry department are often found. Similarly, bursts of
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radiotherapy-, nursing-, operating room-related and many other types of events
can be observed. This data characteristic will be further employed in the next
section.

5.2.4 Analysis Methodology and Results
Our data analysis approach combines two important strategies for extracting tan-
gible knowledge from clinical pathway data. First, drill up is applied in order to
get insight into the general behavior of the healthcare process. In a second phase,
a drill down approach is described that centers on a certain part of the data.

Complexity of Clinical Pathway Data

The crucial challenge for data analysis in the context of clinical pathways is the
complexity of the data. This is because clinical pathways are inherently ad hoc,
multi-disciplinary and strongly human-centric. Because of these characteristics,
almost every observed clinical pathway is unique, which is also the case for the
data set employed in this study. On top of that, the original data set contains
624 different activity types. Further, these activity types as registered in the
different departments are not always of the same granularity. A final element that
complicates the data analysis significantly is the fact that we can only observe
care activities executed within the AMC hospital. However, it is undoubtedly
reasonable to assume that other care activities in peripheral hospitals, by GP’s,
etc. are being executed but not registered in the data. Because of these data
complexities, there is a need for versatile data analysis methods. In this study, it
is shown how process mining techniques can be used, both in a drill up as well as
in a drill down mode. Furthermore, we demonstrate the use of networked graphs
for visualizing sets of cases and their respective characteristics.

Drill Up Analysis

Both in [28] and [89], it is shown that the straightforward application of existing
process discovery techniques is infeasible for the data at hand. Even the stronger
generalization capabilities of Fuzzy Mining [68] prove not very helpful. Therefore,
we show how abstraction applied in a data preprocessing step can be beneficial
in order to obtain general, but useful insights based on the entire data set.

Data preprocessing. Realizing abstraction in a data preprocessing phase con-
sists of replacing the bursts of events belonging to the same organizational unit by
the name of the organizational unit itself. In this way, a clinical pathway in terms
of the unique activities performed by different organizational units is transformed
into sequences of departments.
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A general view using process discovery. As stated earlier, process discov-
ery is the most important asset of the process mining domain. Process discovery
is defined as the extraction of control-flow models from event logs. Note that
these techniques make use of different process modeling notations (e.g. Petri nets,
heuristic nets, fuzzy nets, etc.) in order to represent the discovered model. In
this case, we applied the Fuzzy Miner to the transformed clinical pathways. The
resulting fuzzy net is depicted in Figure 5.7. Note that the nodes contain a signif-
icance value between 0 and 1. Further, the figures on the edges indicate the edge
significance and correlation, also ranging between 0 and 1.

With the purpose to increase the comprehensibility, we restricted the visual-
ization to the eleven most frequent departments. Together with the abstraction
power of Fuzzy Miner, the discovered graph provides some interesting insights
with respect to the gynecological oncology process under investigation:

• A majority of the patients first visit the obstetrics and gynecology depart-
ment.

• From top to bottom, we can clearly observe the diagnostic-therapeutic cycle
characteristic to the majority of care processes. The nursing wards have a
pivotal role in between diagnostics and therapeutics.

• From a diagnostic perspective, lab analyses (majorally blood sample tests)
and to a lesser extent radiology are essential elements of disease typification
in the context of gynecological oncology.

• Despite the fact that the data cover patients with very comparable diag-
noses (i.e. gynecological cancers), streamlined clinical pathways cannot be
observed, even in terms of involved departments.

Drill Down Analysis

As described in the previous section, drill up is a valuable approach for extracting
general knowledge from care process data. Nevertheless, due to the characteristics
of the data, intelligent drill down into specific parts of the data is bound to
provide even more interesting insights. Hereto, we demonstrate a particular focus
on the therapeutic side of the clinical pathways. Since the data provides only
limited information on specific treatments (only treatment codes, without any
explanation), it is opted to investigate this perspective in more detail.

Focalizing on therapeutic activities. To adopt the focus on treatment, ther-
apeutic activities need to be singled out. By inspection of the cases, it can be
noticed that three different types of treatments can be identified: radiotherapy,
chemotherapy and surgery. For radiotherapy, the selection of activities was rather
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Figure 5.7: Fuzzy process model showing the relations between frequently occur-
ring organizational units
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straightforward since the granularity of the events is relatively coarse-grained.
The data contains events such as teletherapie - megavolt fotonen bestrali and
brachytherapie - interstitieel - intensi. Further, the radiotherapy department also
carries out hyperthermia treatments, which are strictly speaking not radiothera-
peutic, but often used in combination with radiation therapy. For chemotherapy,
the selection of appropriate events was slightly more difficult due to the fact that
this type of therapy is scattered between different organizational units. Nonethe-
less, we identified two important chemotherapeutic activities, viz. paclitaxel and
doxorubicine. Finally, also surgical treatments should be taken into account. How-
ever, looking at the events pertaining to the Operating rooms department, there
clearly exist two different types of procedures. On the one hand, the data set
shows a multitude of diagnostic surgical procedures, whereas on the other hand
only therapeutic operations are of interest given our current focus. Nonetheless
the thin line between both, we were able to distinguish between the diagnostic
or therapeutic nature of procedures by investigating the names of the events. For
example, hysterectomies and vulvectomies were considered as therapeutic surgical
activities, while hysteroscopies and urethrocystoscopies were not.

After singling out these therapeutic activities, 477 cases could be observed for
which at least one therapeutic activity has taken place. The event log consisting
of all these events was used to visualize the therapeutic activities by means of a
process model. However, due to the large number of different surgical procedures,
we renamed all these events to surgery, an abstraction which allows for more
useful visualizations. The resulting process model as obtained with fuzzy mining
is depicted in Figure 5.8. In contrast to Figure 5.7, the fuzzy net is slightly adapted
by replacing the original figures in the nodes and on the arcs by more insightful
statistics. As such, the nodes contain their frequency of occurrence, while the
figure on each of the edges of the graph shows the number of times a case followed
the transition from the source node to the target node.

The analysis allows for the formulation of the following findings:

• The fuzzy net shows a number of possible therapeutic choices. However,
because the process model does not contain any such paths, it can be con-
cluded that the combination of surgery or chemotherapy with radiotherapy
occurs highly infrequent.

• The use of chemotherapy is rather limited despite the fact that regimens,
i.e. combinations of different chemotherapy drugs, are often recommendable.
In this way, we could only observe very few chemotherapeutic combina-
tions of Paclitaxel with Doxorubicin. It should be further investigated why
chemotherapy is underrepresented. One possible explanation might be that
chemotherapeutic procedures might be carried out in peripheral hospitals,
thus not captured in the data.
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Figure 5.8: Adapted fuzzy process model showing the relations between different
therapeutic activities



5.2. Analyzing Clinical Pathway Data 147

Visualizations using networked graphs. A second drill down approach con-
sists of visualizing a subset of cases by means of a networked graph. This method-
ology is useful because it allows to visualize cases from different angles by supple-
menting control-flow information with other perspectives. The construction of a
networked graph consists of three steps. First cases are selected based on some cri-
terion. In this case, we considered all cervical cancer cases. Secondly, a Euclidean
distance matrix is constructed denoting the distance between each pair of cases.
This matrix is built by making use of the MRA (Maximum Repeat Alphabet)
technique as proposed in [16]. The MRA technique relies on the identification
of specific patterns which characterize the traces. Notwithstanding the fact that
the authors employ the method for clustering log traces, we use the underlying
distance matrix to construct a networked graph. Such a network graph connects
nodes which represent a case in the data. For comprehensibility reasons, sparsifi-
cation is applied in order to reduce the number of connections between the nodes
because otherwise a fully connected graph is obtained. In this case, we applied
K-nearest-neighbors with K = 2.

Figure 5.9 shows one visualization created with this methodology. Note that
for visualization of the graph, we employed the Yifan Hu algorithm [75] as im-
plemented in Gephi4. The graph shows all patients diagnosed with some type
of cervical cancer. The distance between the nodes is determined by the MRA
distance, which entails that nodes which are closer together present similar exe-
cution paths in terms of the therapeutic events they contain. The figure in the
nodes denotes one representative case ID, with the size of the nodes representing
the frequency of a certain sequence of therapeutic activities. Note that it was
infeasible to represent all ID’s in each of the nodes of the graph. Furthermore,
the node colors indicate the application of some specific therapeutic procedure.
As such, the green nodes denote the occurrence of chemotherapy. In contrast, the
red nodes are cases where hyperthermia treatment is applied. From this visual-
ization, it can be seen that a vast majority of cases do not rely on hyperthermia
or chemotherapy. Cervical cancer is majorally treated by either surgery or radio-
therapy (teletherapy/brachytherapy).

5.2.5 Conclusion
In this study, it was shown how intelligent analysis of clinical pathway data based
on process mining techniques can deliver valuable insights into the actual carry-
ing out of a care process. In a practical case consisting of data on the clinical
pathways of 1.147 gynecological oncology patients at the AMC hospital, it was
demonstrated how both drill up as well as drill down approaches are useful for
care flow knowledge discovery. We are convinced that data analysis based on the

4www.gephi.org
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innovative techniques in the process mining domain is an ideal means for better
streamlining and overall improvement of clinical care processes. In the future, we
will focus on the development of novel methodologies for analyzing the complex
data that is typically found in the logging infrastructures of healthcare information
systems. As such, we will further elaborate the idea of networked graph visualiza-
tions and improve its integration with existing process discovery techniques. The
major benefit of the technique is the enhancement of pure control-flow patterns
with other data dimensions. Therefore, additional information, for instance on
whether patients were cured or not, would instigate a wide variety of analysis
possibilities.
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5.3 Leveraging Process Discovery with Trace
Clustering and Text Mining for Intelligent
Analysis of Incident Management Processes

As explained in Chapter 4, solution strategies should be developed to cope with
the problem that event logs display a too large variety in control-flow behavior
so that the straightforward application of a single-model discovery technique will
often result in an unsatisfactory result. Due to the low number of restrictions
imposed by typical information systems in such flexible environments, ex post
analysis of process execution data requires well-thought analysis methodologies.
Trace clustering is one such technique which allows to reduce the complexity
problem that single-model discovery techniques are confronted with. In this way,
this case study presents how trace clustering can be used to separate execution
traces into different groups for which a more accurate and comprehensible process
model can be discovered. To this, a combination of text mining and decision tree
learning is added to get insight into the atypical behavior in the system. In this
way, traditional process discovery analysis is leveraged so as to discover more
useful insights.

5.3.1 Problem Statement

Throughout this study, we will make use of a running example with the purpose to
clarify the proposed approach. This running example is to be situated in the ICT-
services department of the Catholic University of Leuven (KU Leuven). In this
department, a dedicated team is responsible for the service desk whose main task
is the resolution of IT-related problems. Hereto, a supporting information system
is put in place, which registers the whole life cycle of incident management cases.
As such, the data consists of the life cycle transitions of each of the cases as
recorded by the logging infrastructure of the information system.

Incident management process: data description

Over a six month period, data about 2.726 cases was gathered. For each of these
cases, two different types of data are available: case data and event log data.
Case data, as depicted in Table 5.6, consists of an ID, a textual description and a
type. In the system, four different types are distinguished: Bugfix/Repair, How-
to/Advice, Productive Intervention and New Need. Note however that for 40%
of the cases, the type is not specified. Next to type information, the data also
consists of a textual description. The only restriction with regard to this field is
that the text should be limited to at most 256 characters.
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Table 5.6: Excerpt of case data

ID Textual description Type

Case 01 dump in professional expenses Bugfix/Repair
Case 02 problem with assets ?
Case 03 alumni How-to/Advice
Case 04 fw: certifications 1 - 0431 ?
Case 05 standard check mark in field ’tax-x’ How-to/Advice
Case 06 accounting entry decentral part overhead ?
Case 07 failed wage booking Productive Intervention
Case 08 failed booking 3/5/2010 Productive Intervention
Case 09 new employee invoices bureau New need
Case 10 certifications a1-a431 How-to/Advice
Case 11 vat recovery 2009 Productive Intervention

. . . . . . . . .

Next to case data, there is also process-related information available in the
form of an event log. This information consists of all the events registered for a
certain case. These events correspond to the execution of an activity in the context
of the life cycle of an incident management case. An excerpt of the data is shown
in Table 5.7. Next to an ID, the event log consists of an originator who performed
a certain activity, together with a timestamp that indicates the completion of this
task. In the current data set, 15.552 events were recorded for the 2.726 cases.
Overall, 73 different originators take part in the incident management process.

Process discovery in flexible environments

As stated earlier, process discovery is the most challenging learning task in the
process mining domain. The crucial problem is caused by process data stemming
from highly flexible environments. In such environments, little restrictions are
put in place to limit the possible execution steps. In this way, there exists a wide
variety of execution paths in the event log. Also for the running example data set,
a wide variety of control-flow behavior is present, as illustrated by the fact that 338
different types of execution paths (further also denoted as grouped traces or gt’s)
are found. Furthermore, these various types of traces differ significantly in terms
of their frequency. This is depicted with the histogram in Figure 5.10, which has
trace frequency intervals on the horizontal axis and the amount of distinct grouped
traces belonging to such a trace frequency interval on the vertical axis. The figure
clearly shows that the distribution of trace frequencies (i.e. the amount of cases
that follow an identical solution trajectory in terms of the activities performed)
is strongly skewed. On the one hand, a lot of low-frequent behavior is observed.
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Table 5.7: Excerpt of event log data

ID Originator Activity Timestamp

Case 01 System Initialize 28/05/2010 11:07:30
Case 01 User 1A Handle case 28/05/2010 11:14:21
Case 01 User 1A Ask for feedback 28/05/2010 11:23:21
Case 01 System On hold 28/05/2010 11:48:23
Case 02 User 2B Handle case 28/05/2010 14:24:50
Case 02 User 2B Solve with e-mail 28/05/2010 14:55:24
Case 03 System Initialize 28/05/2010 17:37:49
Case 04 User 1A Handle case 28/05/2010 17:50:54
Case 05 System Initialize 31/05/2010 09:21:30
Case 03 User 1A Handle case 31/05/2010 10:04:56
Case 03 User 1A Ask for feedback 31/05/2010 10:10:59
Case 03 System On hold 31/05/2010 10:24:41
Case 03 User 1A SPAM 31/05/2010 11:54:05
Case 04 User 1A Solve with e-mail 31/05/2010 12:21:56
Case 01 User 3C Handle case 31/05/2010 14:26:05
Case 01 User 3C Solve with e-mail 02/06/2010 09:15:00
Case 01 System Receive solution feedback 02/06/2010 11:05:47
Case 01 User 3C Accept solution 02/06/2010 11:22:35
Case 02 User 2B Accept solution 08/06/2010 17:10:56
Case 04 User 1A Accept solution 19/07/2010 17:34:30

. . . . . . . . . . . .
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For instance, there exist 211 cases that have a unique execution trace within the
system. On the other hand, many cases comply with standard solution strategies
in terms of their control-flow sequences. This is illustrated by the low number of
highly frequent traces that occur in the event log. As such, more than 55% of all
traces conform to one of the ten most frequent grouped traces.
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Figure 5.10: Histogram of trace frequency intervals for the event log

The availability of a wide range of execution behavior makes the application
of single model process discovery techniques difficult. What is typically observed
is that such techniques fail to discover an accurate and comprehensible process
model out of the data. Also for the running example, this is the case. Figure
5.11 and Table 5.8 illustrate the problem at hand. The figure shows the Petri
net process model as discovered by the HeuristicsMiner algorithm [153]. As can
be seen from the table, this model scores badly with respect to accuracy. For
instance, only 0,9% of the traces in the log can be correctly replayed (cfr. the
number of successfully executed traces set). Similarly, behavioral recall (rpB) of
this model equals 0,595 while behavioral precision (pB) is 0,506. As shown in
chapter 2, these values can be aggregated with the F-score to construct an overall
measure for accuracy. The F1-score for this process model is only 0,547.

Next to accuracy, the comprehensibility of the discovered process model is
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mediocre as well. First of all, the discovered Petri net is an unsound workflow net.
Furthermore, the model shows a high number of invisible transitions. Together
with the high number of arcs connecting the nodes in the net, it should be clear
that this model is not ideal for gaining insights into the actual behavior of this
business process. Accordingly, we propose a complementary approach for analyz-
ing the data that combines trace clustering and text mining, as shown in Figure
5.12.

Complete event log

Event log
# traces 2.726

# gt’s 338
# events 15.552

Discovered process
model

rpB 0, 595
pB 0, 506

F1rp
B
,pB

0, 547
set 0, 009

# transitions 61
# places 39
# arcs 176
sound no

Table 5.8: Event log and discovered process model characteristics for the entire
event log

Solution strategy

The solution strategy for leveraging process discovery in the current setting of a
highly flexible incident management process consists of two important elements.
First of all, trace clustering is applied with the purpose of dividing the event log
traces into sub-event logs. This division will allow process discovery techniques
to discover more accurate and comprehensible models from subsets of event log
traces. With respect to trace clustering, the ActiTraCMRA as presented in Section
employed. However, in contrast to the experimental evaluation of ActiTraC in
Chapter 4, the option to separate out remaining behavior in a separate cluster is
applied. These traces in the event log do not fit well in one of the created clusters
because they exhibit atypical control-flow behavior. Therefore, these cases are
separated out and form the subject of the text mining phase. In this second phase,
a combination of text mining and data mining is proposed with the purpose of
finding interesting patterns for the atypical cases. Instead of relying on control-
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flow data (event log), we will make use of the case data, both the unstructured
description field and the type information, since it can be expected that a lot of
knowledge resides in these text fields. The whole solution strategy is represented
in Figure 5.12.

Event log 
Trace 

clustering 
(Section III) 

Standard 

behavior 

Atypical 

behavior 

Process 

Discovery 

Text & data 

mining 
(Section IV) 

Figure 5.12: Overview of the proposed solution strategy

5.3.2 Trace Clustering

Within the field of process mining, Greco et al. [66] were the first to apply clus-
tering techniques to event traces. The idea of grouping traces exhibiting common
behavior is an intuitive approach to reduce the complexity of the discovery prob-
lem. By separating execution traces into different groups, one can rely on multiple
process models to represent the variety in behavior of a certain event log. Also
Song et al. [120] and Ferreira et al. [54] contributed to the development of trace
clustering techniques. In this study, the ActiTraCMRA algorithm as outlined in
Chapter 4 is used. Note that this technique is similar to the traditional MRA-based
clustering technique proposed in [16]. However, instead of hierarchical clustering
based on vectorized process instances, a semi-supervised clustering technique is
put in place that closes the gap between clustering bias and evaluation bias. The
capability of our algorithm to create a residual cluster with remaining, non-fitting
traces for already created clusters is made use of. In this way, the identified atyp-
ical behavior is subject of analysis in Section 5.3.3.
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ActiTraCMRA with a distinct cluster of remaining traces

In accordance with the solution strategy proposed in Section 5.3.1, ActiTraCMRA

is applied to the event log of the running example. In this case we opted to create
four clusters, with one of these the residual cluster. Furthermore, the frequency
window was set to the 10% most frequent remaining traces (parameter α) and
the minimum cluster size was set to 50% of the total number of remaining traces
(parameter β). Tables 5.9 and 5.10 detail a comparison between the application of
ActiTraCMRA and the standard MRA-technique with its optimal settings for this
case (i.e. using F-score similarity). The tables show both event log information
with respect to the clusters created as well as accuracy and comprehensibility
metrics for the underlying process models.

Clus_1 Clus_2 Clus_3 Clus_resid

Event log
# traces (%) 1.372 (50%) 698 (26%) 225 (8%) 431 (16%)

# gt’s (%) 27 (8%) 27 (8%) 24 (7%) 260 (77%)
# events 6.612 3.920 1.582 3.438

Discovered
process model

rpB 1, 000 1, 000 1, 000 0, 491
pB 0, 996 0, 975 0, 891 0, 199

Frp
B
,pB

0, 998 0, 987 0, 943 0, 284
set 1, 000 1, 000 1, 000 0, 000

# transitions 22 24 23 52
# places 11 14 13 34
# arcs 44 48 46 146
sound yes yes yes no

Table 5.9: Event log and discovered process model characteristics for
ActiTraCMRA clustering

The results show a clear difference between both approaches. While
ActiTraCMRA presents three trace clusters with highly accurate underlying pro-
cess models and one residual cluster with low accuracy, the standard MRA-
technique discerns only one cluster (clus_3) with an acceptable accuracy level.
If one averages the F-scores of the process models according to their trace fre-
quencies, it can be found that ActiTraCMRA realizes a weighted average F-score
of 0,88 while the original MRA-technique equals 0,69. As such, from an accu-
racy perspective, our novel trace clustering technique can be considered better
performing.

From an event log perspective, the optimization strategy of ActiTraCMRA

drives the algorithm towards the creation of fairly large clusters in absolute terms,
hereby clustering only a limited number of grouped traces together. The resid-
ual cluster (clus_resid) contains about 16% of the total number of traces, while
this cluster contains more than 75% of the grouped traces. The distribution of
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Clus_1 Clus_2 Clus_3 Clus_4

Event log
# traces (%) 57 (2%) 356 (13%) 1146 (42%) 1167 (43%)

# gt’s (%) 40 (12%) 106 (31%) 44 (13%) 148 (44%)
# events 591 2.843 5.129 6.989

Discovered
process model

rpB 0, 702 0, 701 0, 979 0, 809
pB 0, 304 0, 313 0, 891 0, 434

Frp
B
,pB

0, 424 0, 433 0, 922 0, 565
set 0, 000 0, 014 0, 931 0, 198

# transitions 26 34 30 37
# places 18 21 14 22
# arcs 63 80 60 83
sound no no yes no

Table 5.10: Event log and discovered process model characteristics for standard
MRA clustering

grouped traces over the different clusters is slightly more balanced for the stan-
dard MRA-technique. A final element of comparison involves scalability. Since
the computational complexity of ActiTraCMRA is significantly larger than stan-
dard MRA, it is logical that the run times of the algorithms differ. In this case,
ActiTraCMRA takes on average about 33 seconds to yield a result, while standard
MRA computes the result in about 2 seconds on a standard stand-alone PC. Note
that an exhaustive analysis of the scalability of ActiTraCMRA is out of the scope
this study.

The resulting process models as discovered from the ActiTraCMRA clustering
result with the HeuristicsMiner algorithm are shown in Figure 5.13. Note that
the process model for the residual cluster is not represented for two reasons. First
of all, the according process model is inaccurate and incomprehensible. Secondly,
these residual traces will be the subject of a different knowledge discovery ap-
proach as described in the next section.

5.3.3 Analysis of Atypical Behavior

As described earlier, ActiTraCMRA results in four trace clusters of which three
clusters present accurate and comprehensible process models. However, the fourth
cluster contains all the residual traces that do not fit one of the process models
underlying these three clusters. As such, these traces are considered as atypical
control-flow behavior. It is important to note that the non-residual clusters also
contain low-frequent behavior, so not all low-frequent behavior is to be considered
as atypical. In this section, it is outlined how a combination of text mining and
regular data mining can be made use of in order to discover interesting patterns
for this atypical behavior.
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(a) Discovered Petri net for clus_1

(b) Discovered Petri net for clus_2

Figure 5.13: Petri net result of the HeuristicsMiner algorithm performed on the
trace clusters discovered by ActiTraCMRA
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(c) Discovered Petri net for clus_3

Figure 5.13: Petri net result of the HeuristicsMiner algorithm performed on the
trace clusters discovered by ActiTraCMRA
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Characterizing deviating traces

The key idea behind the solution strategy is leveraging the knowledge hidden
in the case data of each of the execution traces. As such, this phase consists of
the application of text mining and decision tree learning with the purpose of
finding patterns that characterize peculiar control-flow behavior. This behavior is
not common to a majority of the cases in the information system and therefore
separated out by ActiTraCMRA in a residual cluster. We would like to stress
that we do not consider these traces as incompliant. Notwithstanding the fact
that there might exist cases that violate certain business rules or constraints, we
assume that the large majority of this atypical control-flow behavior is allowable.
Accordingly, it seems interesting to look at other characteristics than the typical
control-flow aspects of these cases. In this way, making use of the additional case
information becomes an interesting approach.

Text mining

For the running example, case data is limited to type information and a fully
unstructured textual description. Accordingly, it is this textual description field
that is subject of a text mining analysis. The purpose of text mining is the ex-
traction of frequent keywords that subsequently can be used in a classification
learning setting which distinguishes between typical and atypical behavior. Text
mining from these unstructured text data requires the filtering of stop words and
stemming to prove effective. These steps were performed by making use of the
RapidMiner5 software. Since textual descriptions are available in both English
and Dutch, stop word filtering and stemming were performed for both languages.
Table 5.11 lists the most frequent words in the data set. Since the majority of
textual descriptions are written in Dutch, the most frequent words are in Dutch
as well. Note that there is no optimization procedure put in place that matches
different words with the same meaning in Dutch and English into one attribute
word. The type information together with the tokenized textual descriptions are
now available as attributes for a standard classification learning task.

Classification results

As stated earlier, text mining is combined with decision tree learning in order
to discover useful patterns from case data. To do so, the C4.5-technique [103]
was applied. Note that the data set consists of both typical traces that belong
to one of the non-residual clusters and atypical behavior. Since the data set is
strongly skewed as there exists much more typical traces as compared to atypical,
we applied random undersampling in order to balance the data. As such, the

5http://rapid-i.com
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Word (English translation) Frequency

job (task) 410
step (step) 254

lutick (lutick) 129
fout (error) 128

probleem (problem) 109
loket (counter) 101

foutieve (erroneous) 87
bim (bim) 84

kredietkaart (credit card) 80
isp (isp) 78

nieuw (new) 77
beroepskost (professional expense) 72

factuur (invoice) 64
aanwezig (present) 57
student (student) 57

sap (sap) 54
. . . . . .

Table 5.11: Frequent word list

input data for the tree learning algorithm consists of 862 traces. Furthermore, we
applied 10-fold cross-validation for an assessment of the classification accuracy of
C4.5 decision trees.

The result of this data mining analysis is represented in Figure 5.14. The tree
classifies typical (0) and atypical traces (1) by making use of the type information
and the tokenized textual description. It is recognized that the accuracy level of
63% is moderate, however, this is mainly due to the fact that the logged textual
descriptions are fairly short. The methodology could be more advantageously ap-
plied in case there would be more textual information available. However, the
logging infrastructure currently could not provide more elaborate case informa-
tion.

With respect to the patterns discovered by C4.5, it can be observed for instance
that Bugfix/Repair cases typically deviate from standard control-flow behavior.
Furthermore, we observe that cases where the word “problem” appears in the
text field but without “sap”, also differ from typical control-flows. Based on these
insights, the ICTS services department might undertake an investigation of these
cases in order to find out the exact reasons of deviation. Note that the proposed
methodology would benefit strongly from an increase in the amount of case data
registered by the logging infrastructure. Both structured as well as unstructured
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data fields might increase the potential of accurate discovery of patterns that
provide insight into atypical process behavior.

Type = Bugfix/Repair 

1 (52/13) 

= true = false 

problem 

sap Type = ? 

isp 1 (28/7) 0 (3/1) 

error 

1 (238/176) 0 (12/5) 

1 (13/7) 

1 (207/100) 

= true = false 

yes no 

yes no 

yes no 

yes no 

Figure 5.14: C4.5 decision tree with 63% accuracy (10-fold cross-validation)

5.3.4 Discussion

The discussion section focusses on both elements of the proposed solution strategy.

Trace clustering

The newly proposed trace clustering technique ActiTraCMRA shows some inter-
esting results. By optimizing the underlying process models of the clusters, it
is demonstrated that currently available trace clustering techniques can be im-
proved. However, the semi-supervised learning strategy entails a definite increase
in computational complexity. In future research, it should be investigated how
the scalability of the proposed technique behaves in other real-life environments.
Also a comparative evaluation with other available trace clustering techniques is
subject of future research. Furthermore, the parameters of the algorithm should
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be further investigated as well as finding an optimal way for determining the right
amount of clusters that should be created.

Originator effect

A second element of discussion considers the setup of the text and data min-
ing phase. In the running example, we made use of all available data except for
originator information. However, we tested the addition of originator information
in the second data mining phase. Intuitively, it can be expected that differences
in working methods between originators are an important source of atypical pro-
cess behavior. Nonetheless, the results of the experiment indicated that originator
information has very limited classification power with respect to distinguishing
between typical and atypical process behavior. This indicates that, for the case
at hand, root causes of atypical process behavior are not strongly related to dif-
ferences between originators.

5.3.5 Related Work
As explained earlier, process discovery [10, 63, 118, 131, 153] and trace cluster-
ing [15, 16, 54, 66, 120] are important foundations of this work. Nevertheless,
also conformance checking techniques are key building blocks. For instance, the
ICS-fitness metric [152] is the underlying fitness metric of ActiTraCMRA. For eval-
uation, we employed the recall and precision metrics as described in the second
chapter. Other conformance checking metrics could have been put in place. For
instance, the original conformance metrics proposed in [112] are a viable alterna-
tive. With respect to precision, the ETC-metric in [96] is very similar to behavioral
precision (pB) as used in this study.

Further, the application of rule learning and decision tree algorithms is not
new in the process mining domain. For instance, Rozinat et al. [113] developed a
technique that investigates the decision points in a process model based on case
data. Furthermore, Maruster et al. [91] proposed the use of Ripper [30] to the
process discovery learning problem. Also Linear Temporal Logic (LTL) is often
applied in the field of process mining [137]. For instance, Maggi et al. [87] founded
their declarative process discovery technique on LTL.

5.3.6 Conclusion
In this study, we have developed a novel solution strategy for leveraging pro-
cess discovery techniques in highly flexible environments where traditional single-
model discovery techniques underperform. Our approach consists of the applica-
tion of trace clustering and a combination of text mining and data mining in order
to extract useful knowledge from the original data. With respect to clustering, we
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proposed an adaptation of the existing MRA-technique in the sense that we al-
tered the underlying clustering technique from simple hierarchical clustering to
a semi-supervised learning algorithm that greedily optimizes the accuracy of the
underlying process models. The results in the context of an incident management
process show that the proposed methodology is feasible and valuable. Thanks to
the novel trace clustering technique, more accurate and comprehensible process
models were discovered that represent the typical process behavior in the system.
Furthermore, text mining and decision tree learning provided useful results with
respect to characterizing the atypical behavior relying on case data instead of
control-flow information.

In future work, we plan to further develop the novel trace clustering technique.
Furthermore, we think that combining process discovery, text mining and data
mining should be the subject of increased research efforts. Accordingly, we in-
tend to improve the proposed approach, for instance in the context of healthcare
processes where the level of flexibility is even higher.
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Chapter 6
Conclusion

In the last decade, Process Mining has continuously broadened its prominence
as the most important discipline providing a comprehensive set of techniques for
the analysis of business processes. As explained, Process Mining bridges the two
important research domains of Business Process Management (BPM) and Knowl-
edge Discovery in Databases (KDD). With event logs being the cornerstones of
analysis, process mining techniques possess the capabilities to gain insight into the
actual way of working in the context of a certain business process. Most impor-
tantly, due to their reliance on execution data, the objectivity of these techniques
is to be considered as their unique selling proposition. Despite the hard work of
many researchers around the world, the widespread application of process mining
techniques in industry still remains behind. Notwithstanding the level of academic
maturity of the field, it cannot be denied that there is more work to do towards
effectively crossing the chasm.

This dissertation covers multiple areas of the process mining domain. Chap-
ter 2 elaborates on process discovery evaluation metrics with the main research
objective being the conception of a comprehensive evaluation framework for dis-
covered process models. The contributions of this chapter are further employed
for a multi-dimensional quality assessment of currently available process discovery
techniques in Chapter 3. Furthermore, a novel technique to cluster event traces
is proposed in Chapter 4. The ActiTraC algorithm targets to bridge the gap be-
tween clustering bias and evaluation bias which is a key difficulty for a large
majority of existing trace clustering techniques. Finally, the findings of this dis-
sertation were further validated with three case studies. To conclude this thesis,
the main research contributions are revisited. Moreover, multiple challenges with
respect to different topics that were covered in this thesis remain to be addressed.
Accordingly, a couple of issues for future research are identified.

167
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6.1 Thesis Contributions
In this dissertation, we have described contributions in three different areas of the
process mining research field.

Evaluating discovered process models. In Chapter 2, an assessment is pro-
vided of currently available process discovery evaluation metrics. This assessment
revealed that many of these metrics suffer from multiple drawbacks. In essence,
the process mining field still lacks an implemented, comprehensive framework for
the evaluation of discovered process models. Despite the fact that evaluation di-
mensions such as recall, precision and generalization have been pinpointed from
a theoretical point of view, the actual implementation in terms of metrics still
requires further research. This thesis describes the application of the F-score or
F-measure for process discovery evaluation. The F-score addresses one other ques-
tion related to the absence of a comprehensive evaluation framework, namely the
unavailability of methodologies that specify how to combine and prioritize dif-
ferent metrics to obtain an overall assessment of process model accuracy. This
is an important question because discovered process models are likely to differ
with respect to multiple dimensions at once. Relying on a technique to induce
artificial negative events into an event log, the proposed F-score combines recall
and precision, allowing to weigh these dimensions differently. Note that the ca-
pability to prioritize an evaluation dimension in process discovery is a desirable
characteristic of a process discovery evaluation framework. This is because recall
is the predominant evaluation dimension for discovered process models because
the main objective of a process discovery technique is providing a sound reflection
of the behavior in the log. Accordingly, for both researchers as well as practi-
tioners the availability of a straightforward method to prioritize recall over any
other evaluation dimension is convenient. Furthermore, the assessment of other
evaluation dimensions is often influenced by the level of recall of a discovered pro-
cess model. For instance, existing precision metrics relying on trace replay depend
on whether traces fit the model. This is because in case they don’t, one is always
faced with a complex choice to determine the best option to mimic the non-fitting
trace in the discovered process model. Despite more advanced model-log alignment
techniques such as described in [3], making a replay choice for non-fitting traces
will always influence a replay-based precision metric. In sum, the F-score evalu-
ation approach is considered a valuable addition towards the development of an
evaluation framework for discovered process models.

Benchmarking process discovery techniques. The next contribution of this
dissertation consists of the first large-scale benchmarking study of process discov-
ery techniques using real-life event logs. Assessing the quality of process discovery
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techniques is an essential element for both process mining research as well as for
the use of process mining in practice. Up till now, evaluation of process discovery
techniques was performed in very diverse ways, but mostly on artificial data sets.
In Chapter 3, a multi-dimensional evaluation study was carried out comparing
the accuracy, comprehensibility and scalability of state-of-the-art process discov-
ery techniques on eight real-life event logs. In general, HeuristicsMiner was found
the most appropriate technique in a real-life context. Furthermore, the F-score
methodology was demonstrated to be a practical approach towards determining
the overall accuracy performance of a process discovery technique. Nevertheless,
the study also unveiled a couple of challenges. For instance, proficient quantifi-
cation of the comprehensibility of discovered process models remains difficult.
Although the use of complexity metrics from the process modeling domain was
found to be applicable, the subtle differences between mined and modeled process
models bring about the need for tailor-made solutions. Finally, the problem of
representational bias in process mining was also identified as an important short-
coming of currently available process discovery techniques. In the benchmarking
study, it was shown that single model Petri net discovery techniques often fail to
simultaneously address the challenge of accurate, comprehensible and fast model
discovery. One possible strategy to further improve the results of process discovery
techniques is a reduction of the search space or a redefinition of the modeling lan-
guage so as to accommodate for the specificities of process discovery and process
discovery evaluation.

Active trace clustering. The third important contribution consists of a new
approach for clustering log traces. Trace clustering is one possible strategy to re-
solve the problem that currently available process discovery algorithms are unable
to discover accurate and comprehensible process models out of event logs stem-
ming from highly flexible environments. The main advantage of trace clustering is
that an event log can be split up so that process models can be discovered for mul-
tiple subsets of traces. The new algorithm, called ActiTraC, has its foundations
in the observation that existing trace clustering algorithms suffer from a severe
divergence between the clustering bias and the evaluation bias. This problem is
resolved with an active learning inspired approach that centers on optimizing
the combined process model accuracy. In experimental evaluations, ActiTraC was
shown to significantly improve the accuracy and complexity of the process models
underlying the discovered trace clusters as compared to existing trace clustering
techniques. Furthermore, ActiTraC is a flexible algorithm that can be adapted
for instance towards discovering more domain-relevant clusters. This is because
it provides the option to include a distance matrix between log traces so that the
grouping of more similar traces is enforced. Note that such a distance matrix can
be constructed by using different types of information. In this dissertation, only
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control-flow characteristics of the traces were taken into account. However, other
types of information can be highly useful as well in order to steer the ActiTraC
algorithm.

Case studies. Finally, Chapter 6 describes three case studies that further vali-
date the outlined contributions. Because these studies are situated in the financial
industry, healthcare, and public services respectively, they reflect the wide appli-
cability of process mining techniques.

6.2 Issues for Future Research
The last section of this concluding chapter outlines a number of future research
issues in the areas of process discovery evaluation and trace clustering.

6.2.1 Process Discovery Evaluation

As outlined earlier, a comprehensive evaluation framework for process discovery
techniques is still not fully realized. In our opinion, this is due to four important
challenges.

Computational complexity of trace replay in Petri nets. The calculation
of evaluation metrics most often relies on trace replay in a Petri net. In case such
a model contains invisible or duplicate transitions, traditional trace replay tech-
niques [107] require heuristics in order to keep their computational complexity
under control. However, these heuristics often interfere with the exact calcula-
tion of evaluation metrics. Recent works by Adriansyah et al. [1, 2, 3, 4] have
proposed solutions for dealing with complexities such as invisible and duplicate
transitions by aligning an event log and a process model. Hereto, the A∗ algo-
rithm, a well-known algorithm for shortest path calculation in a directed graph
[45], is employed. The methods proposed by Adriansyah et al. are capable of deal-
ing with several problematic constructs such as invisible and duplicate transitions
from which for earlier trace replay techniques suffer. Yet, as illustrated in [1], these
very recent methods are sometimes confronted with high run times for complex
process models as well. Another approach for alleviating the computational com-
plexity of the calculation of conformance metrics is proposed by Weidlich et al.
[151]. Instead of replaying an event log in the model, they compare a model and a
log based on their respective behavioral profiles. An advantage of this technique
is that time-consuming state-space calculations can be avoided. However, the
global perspective often leads to underestimations of the measured conformance
dimension, for instance when loops occur. As such, the complex trade-off between
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accurate estimation of the evaluation metric and computational complexity of the
calculation method remains an issue for future research.

Punishing overfitting. A second problem is the lack of a good quantifier of
the generalization dimension. The main issue concerning the definition of a gen-
eralization metric lies in the fact that one has to reason about the likeliness of
unseen behavior. It is a definite challenge to design methodologies that can fore-
see which kind of unseen behavior should be accepted by the model. However,
without quantification of the generalization capability of a process model, it is
very difficult to punish overfitting process models.

Combining and prioritizing evaluation dimensions. Notwithstanding that
this dissertation proposes a method to combine and prioritize two important eval-
uation dimensions, different questions remain with respect to the integration of
the identified evaluation dimensions. One can think of an extension of the F-
score towards the three accuracy evaluation dimensions by calculating a weighted
harmonic mean of recall, precision and generalization scores. Note that a robust
quantifier of generalization is required hereto. However, a next issue is the combi-
nation of accuracy and complexity. In Chapter 2, accuracy and comprehensibility
were identified as the two top-level evaluation dimensions. However, in the pro-
cess mining literature, there has been little evidence on how these two more high
level evaluation dimensions should be aggregated. In [22], Buijs et al. propose to
consider simplicity as a fourth evaluation dimension next to recall, precision and
generalization. As such, they propose to construct a user-defined weighted aver-
age of these four dimensions so as to steer their Evolutionary Tree Miner (ETM)
algorithm. Notwithstanding the fact that it is interesting to observe that multi-
ple dimensions can be aggregated in a straightforward way, the question remains
open as to how one can prioritize between different dimensions without any prior
knowledge. Furthermore, this approach has to be validated in more difficult set-
tings so as to verify its robustness. Also, the capturing of simplicity in a single
variable based on a translation to process trees [21] seems rather simple as it can
be expected that other characteristics of the process model might influence the
true complexity. Therefore, in our opinion, the combination of the general dimen-
sions of accuracy and comprehensibility for process discovery evaluation needs to
be explored further.

It is pointed out that in traditional statistics, methodologies to combine model
accuracy and model complexity are available. For instance, the Akaike Information
Criterion (AIC) [6] and the Bayesian/Schwarz Information Criterion (BIC) [116]
are robust model selection criteria that aggregate the likelihood of a model and
the size of the model in terms of the number of free parameters that should be
estimated. However, the application of the idea behind such statistical methods
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is not straightforward for process discovery evaluation. One of the main issues is
that the size of a discovered process model is not always the best quantifier of
process model complexity.

The completeness assumption. Event logs are rarely complete which com-
plicates the definition of precision and generalization metrics. As such, the preci-
sion metric outlined in Chapter 2 as well as the ETC precision metric defined by
Muñoz-Gama and Carmona [96] suffer from similar, overly strict completeness as-
sumptions. Developing evaluation metrics that take into account the natural lack
of completeness of event logs requires two key elements. First of all, currently
available precision metrics and eventual generalization metrics should be adapted
so that their respective completeness assumptions can be relaxed. For instance,
with respect to artificial negative event based precision, there exists opportunities
to relax the strict completeness assumption by an intelligent use of prefix windows.
Secondly, such methods to relax the completeness assumption should be combined
with statistical methods to assess the estimated completeness of an event log. By
assessing the severance of incompleteness, one can for instance define confidence
intervals for precision and generalization metrics. Note that in [156] and [157],
statistical techniques are shown to be useful to estimate the completeness of an
event log.

6.2.2 Trace Clustering

The main research challenges for the development and further improvement of
trace clustering techniques are caused by the fact that trace clustering is expected
to deal with multiple objectives. First of all, trace clustering aims at creating more
accurate and more comprehensible process models for subsets of traces. Next to
these two expectations, trace clustering techniques are expected to group similar,
domain-relevant behavior. Accordingly, trace clustering techniques are faced with
a multiobjective optimization problem.

Domain-driven trace clustering and the curse of dimensionality

A large majority of existing trace clustering techniques target the creation of
domain-relevant clusters in the first place. In order to realize this objective with-
out any additional information beyond control-flow information, most of these
techniques rely on a vector-based approach where the characteristics of traces are
translated into an attribute-value setting. Based on these vectors, distances can be
calculated between traces so as to apply traditional clustering techniques from the
data mining domain. However, due to the fact that control-flow characteristics can
be expressed by a huge amount of attributes, existing trace clustering techniques
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suffer heavily from the curse of dimensionality. As detailed in [74], as soon as the
data dimensionality is high and the number of relevant dimensions is rather low,
the curse of dimensionality hampers any analysis task. Due to the fact that it can
be expected that a limited set of features determines the domain-relevancy for a
set of traces, solutions for dealing with this dimensionality problem are required.
Thus far, this has not been investigated within the process mining domain. In
the domain of data mining, the problem of the curse of dimensionality in unsu-
pervised settings has also received only modest attention. However, techniques
such as shared nearest-neighbor (SNN) [74] and feature subset selection methods
as described in [50] can be expected to improve currently available, vector-based
trace clustering techniques.

Integrating domain- and accuracy-driven trace clustering

In spite of the focus of existing trace clustering techniques on the creation of
domain-relevant clusters, it is argued in this dissertation that the accuracy of the
process models underlying the trace clusters can be of interest as well for steer-
ing a trace clustering algorithm. More specifically, the ActiTraC algorithm was
designed so as to incorporate the optimization of the accuracy of the underly-
ing process models in the clustering methodology by means of a semi-supervised
learning approach. Furthermore, the implemented selective sampling strategy al-
lows for the incorporation of any kind of distance matrix between traces in order
to combine the need for accurate and domain-relevant trace clusters. However,
the incorporation of the MRA-based Euclidean distance between traces did not
significantly improve the creation of meaningful clusters in the supervised exper-
iment. Therefore, there exist opportunities for future research to further improve
the combination of both the need for domain-relevant trace clusters as well as
accurate underlying process models.

Comprehensibility-driven trace clustering

A final element with respect to trace clustering that has not been addressed in this
thesis concerns the problem of model complexity. Typically, understandability of
the process models underlying the created trace clusters is a key determinant of
the usefulness of trace clustering, as is the case with the requirements of accuracy
and domain-relevancy. As such, the design of the ideal trace clustering algorithm
should involve a strategy that allows to optimize three important factors at the
same time. It is considered future work to investigate the possibilities of including
complexity metrics into a semi-supervised clustering technique so as to steer the
algorithm towards even more useful results. It should be noted that this research
problem partially overlaps with research to be conducted in the area of process
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discovery evaluation on how to combine process model accuracy and process model
complexity.



Appendix A
Detailed Accuracy Results for the
Real-Life Event Logs

In this appendix, the detailed results are provided of the experiments as part of
the benchmarking study described in Chapter 3. The tables outline multiple recall
and precision metrics for the different data sets as well as the run time of each of
the algorithms.

175



176 APPENDIX A.
R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
42
6

0,
89
5

na
na

0,
67
3

0,
52
2

0,
67
4

0,
09
7

na
2d

:2
3h

:3
2m

:5
4s

α
+

0,
70
3

0,
80
4

na
na

0,
08
4

0,
69
4

0,
07
7

0,
03
3

0,
18
8

1s

α
+

+
0,
66
3

0,
40
6

na
na

0,
00
0

0,
64
3

0,
49
0

0,
03
0

1,
00
0

1s

D
T

G
en

et
ic

M
in
er

0,
82
3

0,
69
9

na
na

0,
55
3

1,
00
0

0,
74
0

0,
09
5

na
4d

:1
3h

:4
9m

:1
5s

Fl
ow

er
1,
00
0

1,
00
0

0,
14
5

0,
00
0

1,
00
0

0,
69
4

0,
00
0

0,
03
8

1,
00
0

1s

G
en

et
ic

M
in
er

0,
12
1

0,
52
2

0,
59
9

0,
03
0

0,
06
7

0,
72
6

0,
96
6

0,
37
2

1,
00
0

22
d:
11
h:
58
m
:1
9s

H
eu

ris
tic

sM
in
er

0,
20
3

0,
40
0

0,
00
0

0,
00
0

0,
00
0

0,
73
5

0,
93
1

0,
18
4

na
5s

IL
P

M
in
er

1,
00
0

1,
00
0

na
na

1,
00
0

0,
56
4

0,
40
7

0,
06
2

0,
54
1

5m
:3
6s

Ta
bl
e
A
.1
:A

cc
ur
ac
y
m
et
ric

s
fo
r
U
FM

da
ta

se
t

R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
89
3

0,
98
0

na
na

0,
00
0

1,
00
0

0,
96
5

0,
62
4

0,
70
6

23
m
:3
2s

α
+

0,
83
2

0,
72
9

na
na

0,
00
0

0,
32
6

0,
80
1

0,
18
1

0,
15
8

1s

α
+

+
na

na
na

na
na

na
na

na
na

1s

D
T

G
en

et
ic

M
in
er

0,
98
2

0,
98
2

0,
00
0

0,
00
0

0,
97
0

0,
59
4

0,
94
8

0,
53
3

na
1d

:6
h:
2m

:2
6s

Fl
ow

er
1,
00
0

1,
00
0

0,
57
1

0,
00
0

1,
00
0

0,
42
0

0,
00
0

0,
05
7

0,
12
5

1s

G
en

et
ic

M
in
er

0,
75
3

0,
87
9

0,
65
2

0,
00
0

0,
11
0

0,
74
2

0,
98
0

0,
72
4

na
1d

:8
h:
4m

:4
9s

H
eu

ris
tic

sM
in
er

0,
99
6

0,
87
5

0,
66
2

0,
00
0

0,
97
3

0,
85
6

0,
98
7

0,
80
3

0,
55
0

4s

IL
P

M
in
er

0,
89
9

0,
99
0

na
na

1,
00
0

0,
49
3

0,
77
0

0,
20
5

0,
40
4

29
s

Ta
bl
e
A
.2
:A

cc
ur
ac
y
m
et
ric

s
fo
r
P2

P
da

ta
se
t



177

R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
73
1

0,
85
3

na
na

0,
45
1

0,
57
0

0,
90
5

0,
39
7

na
47
m
:5
6s

α
+

0,
52
7

0,
36
7

0,
00
0

0,
00
0

0,
00
0

0,
49
9

0,
99
1

0,
74
1

1,
00
0

1s

α
+

+
0,
58
0

0,
42
8

0,
00
0

0,
00
0

0,
00
0

0,
47
0

0,
98
5

0,
67
4

1,
00
0

1s

D
T

G
en

et
ic

M
in
er

0,
57
3

0,
92
6

na
na

0,
02
8

0,
68
5

0,
85
9

0,
32
5

na
10
h:
22
m
:3
2s

Fl
ow

er
1,
00
0

1,
00
0

0,
28
8

0,
00
0

1,
00
0

0,
52
0

0,
00
0

0,
06
8

0,
20
8

1s

G
en

et
ic

M
in
er

0,
43
9

0,
91
2

0,
90
6

0,
53
1

0,
07
0

0,
68
0

0,
96
0

0,
62
5

na
4h

:2
3m

:5
7s

H
eu

ris
tic

sM
in
er

0,
48
5

0,
70
3

0,
55
4

0,
01
0

0,
04
9

0,
86
8

0,
94
4

0,
48
1

na
4s

IL
P

M
in
er

0,
93
3

1,
00
0

na
na

1,
00
0

0,
74
9

0,
51
3

0,
13
1

0,
37
1

26
s

Ta
bl
e
A
.3
:A

cc
ur
ac
y
m
et
ric

s
fo
r
K
H
D

da
ta

se
t

R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
75
8

0,
84
7

na
na

0,
06
5

0,
67
5

0,
89
1

0,
28
5

1,
00
0

50
m
:4
0s

α
+

0,
58
6

0,
33
6

na
na

0,
00
0

0,
43
8

0,
81
9

0,
08
8

1,
00
0

1s

α
+

+
0,
69
4

0,
30
9

na
na

0,
00
0

0,
50
0

0,
88
1

0,
11
8

1,
00
0

1s

D
T

G
en

et
ic

M
in
er

0,
46
5

0,
83
0

na
na

0,
02
2

0,
69
3

0,
89
8

0,
29
7

na
16
h:
50
m
:1
8s

Fl
ow

er
1,
00
0

1,
00
0

0,
65
9

0,
00
0

1,
00
0

0,
54
0

0,
00
0

0,
04
9

0,
11
0

1s

G
en

et
ic

M
in
er

0,
28
8

0,
87
3

0,
93
5

0,
54
0

0,
00
1

0,
73
1

0,
88
2

0,
27
6

na
6u

:1
5m

:1
4s

H
eu

ris
tic

sM
in
er

0,
79
4

0,
70
3

0,
22
6

0,
00
0

0,
00
0

1,
00
0

0,
89
8

0,
26
2

na
1s

IL
P

M
in
er

0,
99
8

1,
00
0

na
na

1,
00
0

1,
00
0

0,
70
9

0,
15
0

0,
31
5

1m
:2
9s

Ta
bl
e
A
.4
:A

cc
ur
ac
y
m
et
ric

s
fo
r
SI
M

da
ta

se
t



178 APPENDIX A.
R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
68
9

0,
76
2

na
na

0,
08
7

0,
61
4

0,
89
2

0,
33
9

na
36
m
:3
3s

α
+

0,
89
8

0,
83
5

na
na

0,
00
0

0,
64
0

0,
42
1

0,
09
5

1
1s

α
+

+
0,
75
0

0,
52
3

na
na

0,
00
0

0,
60
9

0,
73
2

0,
12
5

1
1s

D
T

G
en

et
ic

M
in
er

0,
75
2

0,
97
4

na
na

0,
01
4

0,
68
1

0,
90
0

0,
41
5

na
22
h:
8m

:2
6s

Fl
ow

er
1,
00
0

1,
00
0

0,
33
2

0,
00
0

1,
00
0

0,
36
0

0,
00
0

0,
06
8

0,
20
4

1s

G
en

et
ic

M
in
er

0,
47
3

0,
81
0

0,
90
2

0,
05
4

0,
06
5

0,
70
7

0,
82
1

0,
24
9

na
1d

:8
h:
28
m
:5
5s

H
eu

ris
tic

sM
in
er

0,
97
0

0,
67
5

0,
00
0

0,
00
0

0,
90
7

0,
78
9

0,
95
0

0,
49
8

na
1s

IL
P

M
in
er

0,
98
0

0,
79
2

na
na

1,
00
0

0,
83
4

0,
85
6

0,
28
6

0,
60
5

53
s

Ta
bl
e
A
.5
:A

cc
ur
ac
y
m
et
ric

s
fo
r
X
B
M

da
ta

se
t

R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
76
5

0,
86
2

na
na

0,
66
6

0,
36
3

0,
96
4

0,
34
4

na
3h

:2
4m

:1
7s

α
+

0,
92
7

0,
70
2

na
na

0,
06
5

0,
59
8

0,
97
1

0,
34
6

0,
42
4

2s

α
+

+
0,
75
0

0,
61
4

0,
52
6

0,
03
4

0,
00
0

0,
59
8

0,
99
2

0,
63
0

1,
00
0

1s

D
T

G
en

et
ic

M
in
er

0,
79
5

0,
89
4

0,
84
6

0,
00
0

0,
50
6

0,
43
1

0,
95
0

0,
28
0

na
5h

:3
3m

:4
4s

Fl
ow

er
1,
00
0

1,
00
0

0,
35
5

0,
00
0

1,
00
0

0,
10
0

0,
00
0

0,
02
2

0,
06
0

1s

G
en

et
ic

M
in
er

0,
68
4

0,
94
0

0,
82
9

0,
02
6

0,
46
7

0,
70
7

0,
97
0

0,
40
7

na
5h

:9
m
:4
5s

H
eu

ris
tic

sM
in
er

0,
98
5

0,
84
0

0,
78
4

0,
13
7

0,
83
6

0,
85
6

0,
99
5

0,
77
6

na
1s

IL
P

M
in
er

0,
95
8

0,
95
3

na
na

1,
00
0

0,
59
1

0,
97
1

0,
42
0

0,
69
4

1,
00
0

Ta
bl
e
A
.6
:A

cc
ur
ac
y
m
et
ric

s
fo
r
X
O
A

da
ta

se
t



179

R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
72
4

0,
73
5

0,
48
3

0,
00
0

0,
17
0

0,
34
2

0,
91
5

0,
05
1

1,
00
0

6h
:1
1m

:4
4s

α
+

na
na

na
na

na
na

na
na

na
na

α
+

+
na

na
na

na
na

na
na

na
na

na

D
T

G
en

et
ic

M
in
er

0,
68
6

0,
68
1

na
na

0,
07
4

0,
83
7

0,
92
8

0,
05
6

na
2d

:3
h:
43
m
:3
4s

Fl
ow

er
1,
00
0

1,
00
0

0,
35
2

0,
00
0

1,
00
0

0,
00
0

0,
07
4

0,
00
7

0,
06
3

1s

G
en

et
ic

M
in
er

0,
44
1

0,
61
8

0,
59
0

0,
00
0

0,
04
4

0,
76
4

0,
93
7

0,
05
8

na
2d

:8
h:
11
m
:4
5s

H
eu

ris
tic

sM
in
er

0,
77
9

0,
77
9

0,
72
8

0,
08
9

0,
17
2

0,
42
9

0,
98
9

0,
30
5

na
21
s

IL
P

M
in
er

0,
97
7

0,
94
0

na
na

1,
00
0

0,
11
5

0,
97
8

0,
21
5

0,
75
1

6m
:7
s

Ta
bl
e
A
.7
:A

cc
ur
ac
y
m
et
ric

s
fo
r
X
N
B

da
ta

se
t

R
ec
al
l

Pr
ec
isi
on

R
un

tim
e

f
rp B

P
F
C
o
m
p
le
te

P
M

se
t

a
′ B

sn B
p
B

et
c P

A
G
N
Es

M
in
er

0,
96
7

0,
95
3

0,
95
3

0,
78
5

0,
78
5

0,
63
5

0,
97
4

0,
76
3

0,
73
4

4m
:2
1s

α
+

0,
71
0

0,
63
8

na
na

0,
11
7

0,
73
7

0,
92
0

0,
41
2

0,
70
6

1s

α
+

+
0,
74
5

0,
70
8

0,
57
6

0,
02
0

0,
11
7

0,
64
5

0,
91
3

0,
41
7

1,
00
0

1s

D
T

G
en

et
ic

M
in
er

0,
93
6

0,
98
3

0,
97
1

0,
08
5

0,
89
9

0,
65
4

0,
94
9

0,
62
8

na
1h

:1
1m

:5
8s

Fl
ow

er
1,
00
0

1,
00
0

0,
32
4

0,
00
0

1,
00
0

0,
18
0

0,
00
0

0,
08
1

0,
16
2

1s

G
en

et
ic

M
in
er

0,
99
5

0,
99
9

0,
96
0

0,
74
1

0,
99
5

0,
64
8

0,
96
6

0,
72
1

na
1u

:2
m
:2
2s

H
eu

ris
tic

sM
in
er

0,
98
6

0,
85
3

0,
83
4

0,
11
4

0,
81
1

0,
69
4

0,
98
3

0,
81
7

na
1s

IL
P

M
in
er

0,
97
6

0,
93
4

na
na

1,
00
0

0,
40
0

0,
92
4

0,
52
0

0,
70
6

16
s

Ta
bl
e
A
.8
:A

cc
ur
ac
y
m
et
ric

s
fo
r
X
A
O

da
ta

se
t



180 APPENDIX A.



Appendix B
Detailed Comprehensibility Results
for the Real-Life Event Logs

This appendix presents the individual comprehensibility results for each of the
real-life event logs gauging the performance of the eight process discovery tech-
niques as assessed in Chapter 3.
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Appendix C
Detailed Results of the
Experimental Evaluation of
ActiTraC with the Artificial Event
Logs

The following three tables present the detailed results of the experimental eval-
uation of the ActiTraC algorithms based on artificially generated event logs as
described in Chapter 4. Note that for the different trace clustering techniques, dif-
ferent parameter settings are taken into account. As to the notation, the following
symbols are used:

• HA denotes the Average Entropy,

• P MW.A. denotes the Weighted Average Parsing Measure,

• P MA denotes the Average Parsing Measure,

• RW.A. denotes the Weighted Average Recall,

• PW.A. denotes the Weighted Average Precision,

• F 1W.A. denotes the Weighted Average F1-score,

• F 2W.A. denotes the Weighted Average F2-score,

• P/T-CDA denotes the Average Place/Transition Connection Degree, and

• P/T-CDW.A. denotes the Weighted Average Place/Transition Connection Degree.
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Event log with exponentially distributed frequencies of dpi’s

Technique Parameter settings HA PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 1,512 0,621 0,152 0,945 0,984 0,964 0,952 3,140 3,159 00:13:29,120
ActiTraCfreq mcs50tf100 1,512 0,621 0,152 0,945 0,984 0,964 0,952 3,140 3,159 00:13:17,893
ActiTraCfreq mcs100tf100 1,512 0,621 0,152 0,945 0,984 0,964 0,952 3,140 3,159 00:13:17,843
ActiTraCfreq mcs25tf95 1,478 0,165 0,032 0,937 0,923 0,929 0,934 3,252 3,246 00:01:20,273
ActiTraCfreq mcs50tf95 1,474 0,007 0,010 0,938 0,914 0,926 0,933 3,322 3,371 00:14:46,769
ActiTraCfreq mcs100tf95 1,474 0,007 0,010 0,938 0,914 0,926 0,933 3,322 3,371 00:14:47,057
ActiTraCMRA w25mcs25tf100 1,481 0,412 0,118 0,917 0,961 0,935 0,923 2,789 3,124 00:06:33,933
ActiTraCMRA w25mcs50tf100 1,481 0,412 0,118 0,917 0,961 0,935 0,923 2,789 3,124 00:06:34,604
ActiTraCMRA w25mcs100tf100 1,481 0,412 0,118 0,917 0,961 0,935 0,923 2,789 3,124 00:06:34,822
ActiTraCMRA w50mcs25tf100 1,529 0,341 0,058 0,839 0,695 0,759 0,804 2,733 2,770 00:05:53,343
ActiTraCMRA w50mcs50tf100 1,529 0,341 0,058 0,839 0,695 0,759 0,804 2,733 2,770 00:05:53,123
ActiTraCMRA w50mcs100tf100 1,529 0,341 0,058 0,839 0,695 0,759 0,804 2,733 2,770 00:05:52,983
ActiTraCMRA w100mcs25tf100 1,529 0,341 0,058 0,839 0,695 0,759 0,804 2,733 2,770 00:05:37,234
ActiTraCMRA w100mcs50tf100 1,529 0,341 0,058 0,839 0,695 0,759 0,804 2,733 2,770 00:05:37,172
ActiTraCMRA w100mcs100tf100 1,529 0,341 0,058 0,839 0,695 0,759 0,804 2,733 2,770 00:05:37,249
ActiTraCMRA w25mcs25tf95 1,506 0,068 0,020 0,902 0,727 0,798 0,855 2,961 2,965 00:04:31,958
ActiTraCMRA w25mcs50tf95 1,537 0,016 0,018 0,896 0,719 0,791 0,848 2,975 2,967 00:06:54,829
ActiTraCMRA w25mcs100tf95 1,537 0,016 0,018 0,896 0,719 0,791 0,848 2,975 2,967 00:06:54,938
ActiTraCMRA w50mcs25tf95 1,521 0,100 0,005 0,884 0,758 0,816 0,855 2,780 2,815 00:06:05,583
ActiTraCMRA w50mcs50tf95 1,521 0,100 0,005 0,884 0,758 0,816 0,855 2,780 2,815 00:06:05,755
ActiTraCMRA w50mcs100tf95 1,521 0,100 0,005 0,884 0,758 0,816 0,855 2,780 2,815 00:06:05,770
ActiTraCMRA w100mcs25tf95 1,498 0,125 0,008 0,893 0,903 0,894 0,892 2,790 2,929 00:05:44,688
ActiTraCMRA w100mcs50tf95 1,469 0,077 0,010 0,881 0,900 0,887 0,882 2,743 2,833 00:06:05,007
ActiTraCMRA w100mcs100tf95 1,469 0,077 0,010 0,881 0,900 0,887 0,882 2,743 2,833 00:06:04,866

MR Nominal-EuclideanDistance 1,556 0,000 0,000 0,836 0,774 0,803 0,823 2,963 2,921 00:00:29,050
MR Nominal-FscoreSimilarity 1,518 0,000 0,000 0,823 0,783 0,799 0,813 3,028 3,038 00:00:17,774
MR Numeric-EuclideanDistance 1,556 0,000 0,000 0,836 0,774 0,803 0,823 2,963 2,921 00:00:30,205
MR Numeric-FscoreSimilarity 1,518 0,000 0,000 0,823 0,783 0,799 0,813 3,028 3,038 00:00:20,025
MRA Nominal-EuclideanDistance 1,524 0,000 0,000 0,853 0,733 0,787 0,825 2,924 2,960 00:00:19,511
MRA Nominal-FscoreSimilarity 1,530 0,005 0,002 0,848 0,778 0,810 0,832 2,967 3,044 00:00:15,830
MRA Numeric-EuclideanDistance 1,524 0,000 0,000 0,853 0,733 0,787 0,825 2,924 2,960 00:00:20,028
MRA Numeric-FscoreSimilarity 1,530 0,005 0,002 0,848 0,778 0,810 0,832 2,967 3,044 00:00:15,607
GED - 1,498 0,000 0,000 0,885 0,772 0,821 0,858 3,082 3,114 00:00:23,949
LED - 1,442 0,025 0,003 0,859 0,732 0,790 0,830 2,898 2,972 00:00:14,732
BOA Nominal-EuclideanDistance 1,533 0,000 0,000 0,830 0,679 0,745 0,793 3,029 3,020 00:00:12,420
BOA Nominal-FscoreSimilarity 1,481 0,000 0,002 0,887 0,795 0,838 0,867 3,051 3,080 00:00:13,216
BOA Numeric-EuclideanDistance 1,533 0,000 0,000 0,830 0,679 0,745 0,793 3,029 3,020 00:00:12,826
BOA Numeric-FscoreSimilarity 1,481 0,000 0,002 0,887 0,795 0,838 0,867 3,051 3,080 00:00:13,263
3-gram Nominal-EuclideanDistance 1,531 0,000 0,000 0,800 0,717 0,755 0,781 2,992 2,982 00:00:17,137
3-gram Nominal-FscoreSimilarity 1,430 0,000 0,000 0,795 0,812 0,789 0,790 3,051 3,033 00:00:13,169
3-gram Numeric-EuclideanDistance 1,531 0,000 0,000 0,800 0,717 0,755 0,781 2,992 2,982 00:00:17,199
3-gram Numeric-FscoreSimilarity 1,430 0,000 0,000 0,795 0,812 0,789 0,790 3,051 3,033 00:00:12,857
Markov - 1,456 0,000 0,000 0,822 0,747 0,780 0,804 3,153 3,170 00:29:05,000
Random - 1,532 0,000 0,001 0,828 0,747 0,782 0,808 3,047 3,045 00:00:07,055

No clustering - NA 0,000 0,000 0,826 0,718 0,768 0,802 2,949 2,949 NA

Table C.1: Results of different trace clustering techniques with varying parameter set-
tings for the artificial event log with exponentially distributed frequencies in terms of
dpi’s.
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Event log with linearly distributed frequencies of dpi’s

Technique Parameter settings HA PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 1,569 0,309 0,255 0,910 0,990 0,948 0,925 3,510 3,660 00:03:32,311
ActiTraCfreq mcs50tf100 1,569 0,309 0,255 0,910 0,990 0,948 0,925 3,510 3,660 00:03:32,514
ActiTraCfreq mcs100tf100 1,569 0,309 0,255 0,910 0,990 0,948 0,925 3,510 3,660 00:03:39,827
ActiTraCfreq mcs25tf95 1,572 0,036 0,032 0,959 0,949 0,954 0,957 3,637 3,683 00:03:06,222
ActiTraCfreq mcs50tf95 1,575 0,034 0,022 0,950 0,962 0,956 0,952 3,454 3,385 00:06:02,995
ActiTraCfreq mcs100tf95 1,577 0,034 0,022 0,950 0,962 0,956 0,952 3,454 3,385 00:06:54,049
ActiTraCMRA w25mcs25tf100 1,560 0,275 0,240 0,903 0,966 0,933 0,915 3,366 3,612 00:02:15,090
ActiTraCMRA w25mcs50tf100 1,560 0,275 0,240 0,903 0,966 0,933 0,915 3,366 3,612 00:02:15,074
ActiTraCMRA w25mcs100tf100 1,560 0,275 0,240 0,903 0,966 0,933 0,915 3,366 3,612 00:02:14,934
ActiTraCMRA w50mcs25tf100 1,567 0,219 0,182 0,885 0,991 0,934 0,904 3,281 3,279 00:01:57,780
ActiTraCMRA w50mcs50tf100 1,567 0,219 0,182 0,885 0,991 0,934 0,904 3,281 3,279 00:01:57,516
ActiTraCMRA w50mcs100tf100 1,567 0,219 0,182 0,885 0,991 0,934 0,904 3,281 3,279 00:01:57,843
ActiTraCMRA w100mcs25tf100 1,561 0,228 0,188 0,886 0,990 0,935 0,905 3,222 3,400 00:01:48,985
ActiTraCMRA w100mcs50tf100 1,561 0,228 0,188 0,886 0,990 0,935 0,905 3,222 3,400 00:01:48,736
ActiTraCMRA w100mcs100tf100 1,561 0,228 0,188 0,886 0,990 0,935 0,905 3,222 3,400 00:01:48,923
ActiTraCMRA w25mcs25tf95 1,567 0,032 0,025 0,932 0,973 0,952 0,940 3,397 3,424 00:03:55,467
ActiTraCMRA w25mcs50tf95 1,567 0,032 0,025 0,932 0,973 0,952 0,940 3,397 3,424 00:03:55,453
ActiTraCMRA w25mcs100tf95 1,567 0,032 0,025 0,932 0,973 0,952 0,940 3,397 3,424 00:03:55,421
ActiTraCMRA w50mcs25tf95 1,581 0,017 0,012 0,945 0,928 0,936 0,941 3,569 3,595 00:04:25,642
ActiTraCMRA w50mcs50tf95 1,581 0,017 0,012 0,945 0,928 0,936 0,941 3,569 3,595 00:04:25,424
ActiTraCMRA w50mcs100tf95 1,581 0,017 0,012 0,945 0,928 0,936 0,941 3,569 3,595 00:04:25,798
ActiTraCMRA w100mcs25tf95 1,571 0,035 0,028 0,926 0,895 0,910 0,920 3,539 3,635 00:03:08,639
ActiTraCMRA w100mcs50tf95 1,571 0,035 0,028 0,926 0,895 0,910 0,920 3,539 3,635 00:03:08,639
ActiTraCMRA w100mcs100tf95 1,571 0,035 0,028 0,926 0,895 0,910 0,920 3,539 3,635 00:03:08,640

MR Nominal-EuclideanDistance 1,582 0,000 0,000 0,865 0,775 0,817 0,845 2,918 2,916 00:00:29,100
MR Nominal-FscoreSimilarity 1,572 0,001 0,002 0,859 0,697 0,769 0,821 2,975 2,966 00:00:16,432
MR Numeric-EuclideanDistance 1,582 0,000 0,000 0,865 0,775 0,817 0,845 2,918 2,916 00:00:27,741
MR Numeric-FscoreSimilarity 1,572 0,001 0,002 0,859 0,697 0,769 0,821 2,975 2,966 00:00:16,089
MRA Nominal-EuclideanDistance 1,582 0,000 0,000 0,826 0,733 0,776 0,805 3,009 2,918 00:00:20,028
MRA Nominal-FscoreSimilarity 1,577 0,017 0,013 0,853 0,818 0,834 0,845 3,023 2,980 00:00:15,809
MRA Numeric-EuclideanDistance 1,582 0,000 0,000 0,826 0,733 0,776 0,805 3,009 2,918 00:00:20,324
MRA Numeric-FscoreSimilarity 1,577 0,017 0,013 0,853 0,818 0,834 0,845 3,023 2,980 00:00:15,856
GED - 1,577 0,018 0,015 0,896 0,791 0,839 0,872 2,907 2,896 00:00:23,339
LED - 1,578 0,009 0,010 0,852 0,808 0,828 0,842 2,993 2,979 00:00:13,263
BOA Nominal-EuclideanDistance 1,583 0,002 0,002 0,864 0,790 0,824 0,847 2,986 2,972 00:00:13,170
BOA Nominal-FscoreSimilarity 1,577 0,006 0,010 0,907 0,793 0,846 0,881 2,907 2,918 00:00:13,139
BOA Numeric-EuclideanDistance 1,583 0,002 0,002 0,864 0,790 0,824 0,847 2,986 2,972 00:00:13,434
BOA Numeric-FscoreSimilarity 1,577 0,006 0,010 0,907 0,793 0,846 0,881 2,907 2,918 00:00:12,950
3-gram Nominal-EuclideanDistance 1,576 0,006 0,007 0,880 0,741 0,803 0,847 3,038 2,948 00:00:17,559
3-gram Nominal-FscoreSimilarity 1,579 0,003 0,005 0,856 0,772 0,812 0,838 2,982 2,962 00:00:14,982
3-gram Numeric-EuclideanDistance 1,576 0,006 0,007 0,880 0,741 0,803 0,847 3,038 2,948 00:00:17,308
3-gram Numeric-FscoreSimilarity 1,579 0,003 0,005 0,856 0,772 0,812 0,838 2,982 2,962 00:00:12,467
Markov - 1,507 0,001 0,002 0,835 0,777 0,804 0,822 3,203 3,213 01:04:46,000
Random - 1,580 0,000 0,000 0,843 0,753 0,795 0,823 3,004 3,001 00:00:08,929

No clustering - NA 0,009 0,012 0,885 0,811 0,846 0,869 2,941 2,941 NA

Table C.2: Results of different trace clustering techniques with varying parameter set-
tings for the artificial event log with linearly distributed frequencies in terms of dpi’s.
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Event log with uniformly distributed frequencies of dpi’s

Technique Parameter settings HA PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 1,564 0,088 0,088 0,842 0,888 0,862 0,849 3,058 3,099 00:00:56,465
ActiTraCfreq mcs50tf100 1,564 0,088 0,088 0,842 0,888 0,862 0,849 3,058 3,099 00:00:56,435
ActiTraCfreq mcs100tf100 1,564 0,088 0,088 0,842 0,888 0,862 0,849 3,058 3,099 00:00:56,622
ActiTraCfreq mcs25tf95 1,576 0,025 0,025 0,924 0,921 0,922 0,923 3,468 3,623 00:02:44,111
ActiTraCfreq mcs50tf95 1,569 0,022 0,022 0,926 0,917 0,920 0,924 3,440 3,590 00:03:31,563
ActiTraCfreq mcs100tf95 1,569 0,022 0,022 0,926 0,917 0,920 0,924 3,440 3,590 00:03:31,453
ActiTraCMRA w25mcs25tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,401
ActiTraCMRA w25mcs50tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,292
ActiTraCMRA w25mcs100tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,152
ActiTraCMRA w50mcs25tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,089
ActiTraCMRA w50mcs50tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,121
ActiTraCMRA w50mcs100tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,276
ActiTraCMRA w100mcs25tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:58,135
ActiTraCMRA w100mcs50tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,947
ActiTraCMRA w100mcs100tf100 1,558 0,127 0,127 0,855 0,884 0,867 0,859 3,129 3,116 00:00:57,385
ActiTraCMRA w25mcs25tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:00,313
ActiTraCMRA w25mcs50tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:00,452
ActiTraCMRA w25mcs100tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:00,141
ActiTraCMRA w50mcs25tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:00,281
ActiTraCMRA w50mcs50tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:00,234
ActiTraCMRA w50mcs100tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:00,842
ActiTraCMRA w100mcs25tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:03,369
ActiTraCMRA w100mcs50tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:01,638
ActiTraCMRA w100mcs100tf95 1,568 0,042 0,042 0,933 0,902 0,917 0,927 3,692 3,695 00:03:00,562

MR Nominal-EuclideanDistance 1,584 0,000 0,000 0,863 0,806 0,833 0,851 2,959 2,947 00:00:27,381
MR Nominal-FscoreSimilarity 1,575 0,005 0,005 0,856 0,768 0,809 0,836 2,941 2,926 00:00:20,712
MR Numeric-EuclideanDistance 1,584 0,000 0,000 0,863 0,806 0,833 0,851 2,959 2,947 00:00:29,803
MR Numeric-FscoreSimilarity 1,575 0,005 0,005 0,856 0,768 0,809 0,836 2,941 2,926 00:00:16,932
MRA Nominal-EuclideanDistance 1,581 0,000 0,000 0,831 0,758 0,792 0,815 3,029 2,903 00:00:19,528
MRA Nominal-FscoreSimilarity 1,577 0,010 0,010 0,865 0,814 0,838 0,853 3,060 2,970 00:00:14,559
MRA Numeric-EuclideanDistance 1,581 0,000 0,000 0,831 0,758 0,792 0,815 3,029 2,903 00:00:19,262
MRA Numeric-FscoreSimilarity 1,577 0,010 0,010 0,865 0,814 0,838 0,853 3,060 2,970 00:00:15,326
GED - 1,581 0,017 0,017 0,886 0,815 0,848 0,870 2,957 2,963 00:00:23,574
LED - 1,576 0,010 0,010 0,865 0,798 0,829 0,850 3,006 2,966 00:00:13,451
BOA Nominal-EuclideanDistance 1,580 0,003 0,003 0,866 0,771 0,814 0,844 2,992 2,981 00:00:12,529
BOA Nominal-FscoreSimilarity 1,578 0,010 0,010 0,901 0,786 0,839 0,875 2,896 2,916 00:00:13,060
BOA Numeric-EuclideanDistance 1,580 0,003 0,003 0,866 0,771 0,814 0,844 2,992 2,981 00:00:13,060
BOA Numeric-FscoreSimilarity 1,578 0,010 0,010 0,901 0,786 0,839 0,875 2,896 2,916 00:00:12,982
3-gram Nominal-EuclideanDistance 1,579 0,007 0,007 0,877 0,756 0,812 0,850 2,995 2,937 00:00:17,371
3-gram Nominal-FscoreSimilarity 1,579 0,008 0,008 0,853 0,720 0,779 0,821 2,973 2,968 00:00:13,248
3-gram Numeric-EuclideanDistance 1,579 0,007 0,007 0,877 0,756 0,812 0,850 2,995 2,937 00:00:17,169
3-gram Numeric-FscoreSimilarity 1,579 0,008 0,008 0,853 0,720 0,779 0,821 2,973 2,968 00:00:13,310
Markov - 1,551 0,002 0,002 0,795 0,825 0,805 0,798 3,286 3,289 00:52:58,000
Random - 1,581 0,002 0,002 0,862 0,769 0,812 0,841 2,985 2,985 00:00:10,229

No clustering - NA 0,023 0,023 0,899 0,807 0,851 0,879 2,946 2,946 NA

Table C.3: Results of different trace clustering techniques with varying parameter set-
tings for the artificial event log with uniformly distributed frequencies in terms of dpi’s.



Appendix D
Detailed Results of the Real-Life
Experiments of the Comparative
Evaluation of the ActiTraC
Algorithms

The following twelve tables present the detailed results of the experimental eval-
uation of the ActiTraC algorithms based on four real-life event logs as described
in Chapter 4. Note that for the different trace clustering techniques, different pa-
rameter settings are taken into account. Furthermore, the number of clusters is
varied from 3 to 5. As to the notation, the following symbols are used:

• PMW.A. denotes the Weighted Average Parsing Measure,

• PMA denotes the Average Parsing Measure,

• RW.A. denotes the Weighted Average Recall,

• PW.A. denotes the Weighted Average Precision,

• F1W.A. denotes the Weighted Average F1-score,

• F2W.A. denotes the Weighted Average F2-score,

• P/T-CDA denotes the Average Place/Transition Connection Degree, and

• P/T-CDW.A. denotes the Weighted Average Place/Transition Connection
Degree.
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Event log KIM - 3 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,927 0,246 0,986 0,978 0,982 0,984 2,774 2,733 00:04:42,812
ActiTraCfreq mcs50tf100 0,938 0,313 0,989 0,971 0,979 0,985 3,022 2,864 00:03:45,775
ActiTraCfreq mcs100tf100 0,952 0,371 0,990 0,977 0,983 0,987 2,997 3,298 01:15:13,238
ActiTraCfreq mcs25tf95 0,903 0,209 0,986 0,973 0,979 0,983 2,838 2,755 00:01:08,642
ActiTraCfreq mcs50tf95 0,818 0,090 0,984 0,938 0,959 0,973 3,098 2,885 00:06:36,917
ActiTraCfreq mcs100tf95 0,207 0,016 0,959 0,963 0,958 0,958 2,897 3,349 01:16:33,304
ActiTraCMRA w25mcs25tf100 0,898 0,175 0,976 0,951 0,963 0,971 2,782 2,821 00:00:41,838
ActiTraCMRA w25mcs50tf100 0,915 0,221 0,981 0,964 0,972 0,978 2,914 2,912 00:05:58,339
ActiTraCMRA w25mcs100tf100 0,941 0,358 0,987 0,962 0,974 0,982 2,988 3,135 01:14:21,066
ActiTraCMRA w50mcs25tf100 0,898 0,175 0,976 0,951 0,963 0,971 2,782 2,821 00:00:42,091
ActiTraCMRA w50mcs50tf100 0,915 0,221 0,981 0,964 0,972 0,978 2,914 2,912 00:05:56,972
ActiTraCMRA w50mcs100tf100 0,941 0,358 0,987 0,962 0,974 0,982 2,988 3,135 01:13:30,044
ActiTraCMRA w100mcs25tf100 0,898 0,175 0,976 0,951 0,963 0,971 2,782 2,821 00:00:42,716
ActiTraCMRA w100mcs50tf100 0,915 0,221 0,981 0,964 0,972 0,978 2,914 2,912 00:05:59,967
ActiTraCMRA w100mcs100tf100 0,941 0,358 0,987 0,962 0,974 0,982 2,988 3,135 01:13:00,157
ActiTraCMRA w25mcs25tf95 0,782 0,101 0,973 0,975 0,974 0,973 2,831 2,952 00:00:48,319
ActiTraCMRA w25mcs50tf95 0,784 0,099 0,963 0,969 0,965 0,964 3,071 3,100 00:04:58,579
ActiTraCMRA w25mcs100tf95 0,204 0,010 0,962 0,899 0,926 0,947 3,107 3,302 01:04:23,124
ActiTraCMRA w50mcs25tf95 0,764 0,060 0,962 0,934 0,946 0,955 2,950 3,009 00:00:54,774
ActiTraCMRA w50mcs50tf95 0,495 0,033 0,957 0,942 0,946 0,952 3,066 3,190 00:09:23,305
ActiTraCMRA w50mcs100tf95 0,204 0,010 0,962 0,899 0,926 0,947 3,107 3,302 01:04:01,626
ActiTraCMRA w100mcs25tf95 0,764 0,060 0,962 0,934 0,946 0,955 2,950 3,009 00:00:55,959
ActiTraCMRA w100mcs50tf95 0,495 0,033 0,957 0,942 0,946 0,952 3,066 3,190 00:09:23,956
ActiTraCMRA w100mcs100tf95 0,204 0,010 0,962 0,899 0,926 0,947 3,107 3,302 01:03:20,846

MR Nominal-EuclideanDistance 0,212 0,005 0,817 0,948 0,871 0,836 3,157 3,364 00:01:40,151
MR Nominal-FscoreSimilarity 0,195 0,003 0,886 0,895 0,881 0,881 3,216 3,297 00:00:54,439
MR Numeric-EuclideanDistance 0,212 0,005 0,817 0,948 0,871 0,836 3,157 3,364 00:01:36,634
MR Numeric-FscoreSimilarity 0,195 0,003 0,886 0,895 0,881 0,881 3,216 3,297 00:00:52,987
MRA Nominal-EuclideanDistance 0,196 0,004 0,820 0,914 0,859 0,834 3,134 3,277 00:01:12,616
MRA Nominal-FscoreSimilarity 0,260 0,005 0,878 0,752 0,807 0,847 3,331 3,372 00:00:53,830
MRA Numeric-EuclideanDistance 0,196 0,004 0,820 0,914 0,859 0,834 3,134 3,277 00:01:15,574
MRA Numeric-FscoreSimilarity 0,260 0,005 0,878 0,752 0,807 0,847 3,331 3,372 00:00:51,429
GED - 0,213 0,007 0,829 0,722 0,765 0,799 3,404 3,432 00:01:09,062
LED - 0,195 0,004 0,878 0,893 0,878 0,875 3,342 3,421 00:00:43,667
BOA Nominal-EuclideanDistance 0,214 0,006 0,817 0,952 0,874 0,837 3,243 3,445 00:00:36,467
BOA Nominal-FscoreSimilarity 0,213 0,009 0,836 0,730 0,772 0,806 3,298 3,220 00:00:32,095
BOA Numeric-EuclideanDistance 0,214 0,006 0,817 0,952 0,874 0,837 3,243 3,445 00:00:41,371
BOA Numeric-FscoreSimilarity 0,213 0,009 0,836 0,730 0,772 0,806 3,298 3,220 00:00:32,047
3-gram Nominal-EuclideanDistance 0,215 0,012 0,820 0,981 0,892 0,847 2,865 3,443 00:00:54,631
3-gram Nominal-FscoreSimilarity 0,215 0,009 0,830 0,756 0,781 0,807 3,253 3,313 00:00:37,030
3-gram Numeric-EuclideanDistance 0,215 0,012 0,820 0,981 0,892 0,847 2,865 3,443 00:00:57,973
3-gram Numeric-FscoreSimilarity 0,215 0,009 0,830 0,756 0,781 0,807 3,253 3,313 00:00:36,764
Markov - 0,277 0,010 0,934 0,961 0,947 0,939 3,173 3,148 07:21:55,000
Random - 0,214 0,004 0,843 0,776 0,804 0,826 3,272 3,293 00:00:18,038

No clustering - 0,198 0,006 0,821 0,985 0,895 0,849 3,540 3,540 NA

Table D.1: Results of different trace clustering techniques with varying parameter
settings for event log KIM in case of the creation of 3 clusters.
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Event log KIM - 4 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,948 0,366 0,991 0,983 0,987 0,989 2,797 2,745 00:04:41,347
ActiTraCfreq mcs50tf100 0,948 0,350 0,991 0,973 0,981 0,987 2,967 2,861 00:04:45,702
ActiTraCfreq mcs100tf100 0,956 0,387 0,991 0,978 0,983 0,988 2,919 3,295 01:13:28,792
ActiTraCfreq mcs25tf95 0,909 0,290 0,989 0,979 0,984 0,987 2,901 2,773 00:01:12,321
ActiTraCfreq mcs50tf95 0,817 0,076 0,987 0,931 0,954 0,972 3,068 2,881 00:06:58,280
ActiTraCfreq mcs100tf95 0,210 0,017 0,959 0,965 0,959 0,958 2,762 3,347 01:14:31,231
ActiTraCMRA w25mcs25tf100 0,916 0,192 0,981 0,952 0,966 0,974 2,748 2,817 00:02:13,160
ActiTraCMRA w25mcs50tf100 0,931 0,253 0,986 0,966 0,975 0,981 2,883 2,910 00:07:23,729
ActiTraCMRA w25mcs100tf100 0,950 0,379 0,990 0,963 0,976 0,984 2,894 3,129 01:13:38,657
ActiTraCMRA w50mcs25tf100 0,916 0,192 0,981 0,952 0,966 0,974 2,748 2,817 00:02:13,212
ActiTraCMRA w50mcs50tf100 0,927 0,246 0,985 0,965 0,974 0,980 2,868 2,909 00:06:37,542
ActiTraCMRA w50mcs100tf100 0,950 0,379 0,990 0,963 0,976 0,984 2,894 3,129 01:13:37,962
ActiTraCMRA w100mcs25tf100 0,916 0,192 0,981 0,952 0,966 0,974 2,748 2,817 00:02:13,180
ActiTraCMRA w100mcs50tf100 0,927 0,246 0,985 0,965 0,974 0,980 2,868 2,909 00:06:37,792
ActiTraCMRA w100mcs100tf100 0,950 0,379 0,990 0,963 0,976 0,984 2,894 3,129 01:13:48,820
ActiTraCMRA w25mcs25tf95 0,787 0,094 0,978 0,976 0,976 0,977 2,882 2,960 00:01:19,476
ActiTraCMRA w25mcs50tf95 0,783 0,095 0,971 0,954 0,959 0,965 3,008 3,081 00:06:37,323
ActiTraCMRA w25mcs100tf95 0,204 0,014 0,962 0,900 0,927 0,947 2,921 3,301 01:03:29,326
ActiTraCMRA w50mcs25tf95 0,778 0,063 0,976 0,950 0,962 0,970 2,951 3,012 00:01:03,966
ActiTraCMRA w50mcs50tf95 0,567 0,069 0,969 0,950 0,957 0,963 2,950 3,139 00:09:22,908
ActiTraCMRA w50mcs100tf95 0,204 0,014 0,962 0,900 0,927 0,947 2,921 3,301 01:03:29,336
ActiTraCMRA w100mcs25tf95 0,778 0,063 0,976 0,950 0,962 0,970 2,951 3,012 00:01:03,919
ActiTraCMRA w100mcs50tf95 0,567 0,069 0,969 0,950 0,957 0,963 2,950 3,139 00:09:23,425
ActiTraCMRA w100mcs100tf95 0,204 0,014 0,962 0,900 0,927 0,947 2,921 3,301 01:04:26,909

MR Nominal-EuclideanDistance 0,212 0,005 0,818 0,949 0,872 0,836 3,005 3,357 00:01:51,065
MR Nominal-FscoreSimilarity 0,197 0,004 0,889 0,821 0,847 0,870 3,261 3,319 00:01:12,398
MR Numeric-EuclideanDistance 0,212 0,005 0,818 0,949 0,872 0,836 3,005 3,357 00:01:38,805
MR Numeric-FscoreSimilarity 0,197 0,004 0,889 0,821 0,847 0,870 3,261 3,319 00:01:00,123
MRA Nominal-EuclideanDistance 0,196 0,006 0,821 0,914 0,860 0,835 3,009 3,275 00:01:26,031
MRA Nominal-FscoreSimilarity 0,260 0,008 0,880 0,758 0,812 0,851 3,172 3,365 00:00:58,062
MRA Numeric-EuclideanDistance 0,196 0,006 0,821 0,914 0,860 0,835 3,009 3,275 00:01:13,278
MRA Numeric-FscoreSimilarity 0,260 0,008 0,880 0,758 0,812 0,851 3,172 3,365 00:00:50,008
GED - 0,212 0,006 0,828 0,684 0,745 0,791 3,324 3,441 00:01:10,467
LED - 0,195 0,004 0,879 0,895 0,879 0,876 3,193 3,419 00:00:44,042
BOA Nominal-EuclideanDistance 0,214 0,006 0,816 0,945 0,870 0,834 3,115 3,434 00:00:38,717
BOA Nominal-FscoreSimilarity 0,244 0,020 0,844 0,854 0,836 0,836 3,229 3,180 00:00:31,798
BOA Numeric-EuclideanDistance 0,214 0,006 0,816 0,945 0,870 0,834 3,115 3,434 00:00:38,404
BOA Numeric-FscoreSimilarity 0,244 0,020 0,844 0,854 0,836 0,836 3,229 3,180 00:00:32,297
3-gram Nominal-EuclideanDistance 0,215 0,012 0,828 0,783 0,792 0,809 3,007 3,434 00:00:50,976
3-gram Nominal-FscoreSimilarity 0,196 0,006 0,862 0,773 0,806 0,836 3,239 3,256 00:00:33,562
3-gram Numeric-EuclideanDistance 0,215 0,012 0,828 0,783 0,792 0,809 3,007 3,434 00:00:52,319
3-gram Numeric-FscoreSimilarity 0,196 0,006 0,862 0,773 0,806 0,836 3,239 3,256 00:00:35,764
Markov - 0,452 0,014 0,889 0,786 0,833 0,866 3,122 3,087 06:40:26,000
Random - 0,261 0,006 0,837 0,814 0,823 0,831 3,148 3,150 00:00:17,955

No clustering - 0,198 0,006 0,821 0,985 0,895 0,849 3,540 3,540 NA

Table D.2: Results of different trace clustering techniques with varying parameter
settings for event log KIM in case of the creation of 4 clusters.
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Event log KIM - 5 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,950 0,382 0,991 0,984 0,987 0,990 2,780 2,745 00:05:13,924
ActiTraCfreq mcs50tf100 0,952 0,361 0,992 0,973 0,982 0,987 2,879 2,858 00:05:09,413
ActiTraCfreq mcs100tf100 0,960 0,406 0,991 0,977 0,984 0,988 2,893 3,293 01:16:27,375
ActiTraCfreq mcs25tf95 0,910 0,289 0,991 0,973 0,980 0,986 2,920 2,774 00:01:48,906
ActiTraCfreq mcs50tf95 0,818 0,081 0,987 0,932 0,954 0,972 2,988 2,879 00:07:09,887
ActiTraCfreq mcs100tf95 0,211 0,024 0,959 0,965 0,959 0,958 2,698 3,347 01:15:48,312
ActiTraCMRA w25mcs25tf100 0,934 0,262 0,986 0,964 0,975 0,982 2,780 2,819 00:03:52,788
ActiTraCMRA w25mcs50tf100 0,936 0,267 0,987 0,965 0,975 0,982 2,848 2,909 00:07:50,685
ActiTraCMRA w25mcs100tf100 0,954 0,396 0,990 0,963 0,976 0,984 2,880 3,128 01:14:52,742
ActiTraCMRA w50mcs25tf100 0,934 0,262 0,986 0,964 0,975 0,982 2,780 2,819 00:03:53,805
ActiTraCMRA w50mcs50tf100 0,942 0,305 0,988 0,967 0,977 0,984 2,904 2,913 00:07:32,236
ActiTraCMRA w50mcs100tf100 0,954 0,396 0,990 0,963 0,976 0,984 2,880 3,128 01:15:01,277
ActiTraCMRA w100mcs25tf100 0,934 0,262 0,986 0,964 0,975 0,982 2,780 2,819 00:03:52,420
ActiTraCMRA w100mcs50tf100 0,942 0,305 0,988 0,967 0,977 0,984 2,904 2,913 00:07:30,875
ActiTraCMRA w100mcs100tf100 0,954 0,396 0,990 0,963 0,976 0,984 2,880 3,128 01:15:05,213
ActiTraCMRA w25mcs25tf95 0,789 0,096 0,980 0,970 0,974 0,977 2,874 2,961 00:02:25,197
ActiTraCMRA w25mcs50tf95 0,784 0,091 0,974 0,954 0,960 0,967 2,982 3,080 00:08:52,808
ActiTraCMRA w25mcs100tf95 0,204 0,017 0,962 0,900 0,927 0,947 2,830 3,301 01:05:03,532
ActiTraCMRA w50mcs25tf95 0,795 0,073 0,977 0,947 0,960 0,969 2,926 3,006 00:01:53,887
ActiTraCMRA w50mcs50tf95 0,569 0,070 0,970 0,950 0,957 0,964 2,920 3,139 00:09:53,106
ActiTraCMRA w50mcs100tf95 0,204 0,017 0,962 0,900 0,927 0,947 2,830 3,301 01:04:25,885
ActiTraCMRA w100mcs25tf95 0,795 0,073 0,977 0,947 0,960 0,969 2,926 3,006 00:01:53,527
ActiTraCMRA w100mcs50tf95 0,569 0,070 0,970 0,950 0,957 0,964 2,920 3,139 00:09:53,037
ActiTraCMRA w100mcs100tf95 0,204 0,017 0,962 0,900 0,927 0,947 2,830 3,301 01:04:27,338

MR Nominal-EuclideanDistance 0,212 0,005 0,823 0,949 0,873 0,839 2,929 3,346 00:01:49,456
MR Nominal-FscoreSimilarity 0,197 0,005 0,891 0,820 0,847 0,870 3,123 3,297 00:00:56,625
MR Numeric-EuclideanDistance 0,212 0,005 0,823 0,949 0,873 0,839 2,929 3,346 00:01:38,461
MR Numeric-FscoreSimilarity 0,197 0,005 0,891 0,820 0,847 0,870 3,123 3,297 00:00:53,939
MRA Nominal-EuclideanDistance 0,196 0,006 0,821 0,910 0,857 0,833 2,961 3,252 00:01:21,299
MRA Nominal-FscoreSimilarity 0,260 0,008 0,882 0,762 0,816 0,854 3,076 3,327 00:00:56,525
MRA Numeric-EuclideanDistance 0,196 0,006 0,821 0,910 0,857 0,833 2,961 3,252 00:01:14,075
MRA Numeric-FscoreSimilarity 0,260 0,008 0,882 0,762 0,816 0,854 3,076 3,327 00:00:51,335
GED - 0,212 0,006 0,827 0,684 0,744 0,789 3,207 3,318 00:01:09,889
LED - 0,195 0,003 0,879 0,738 0,800 0,845 3,250 3,719 00:00:45,135
BOA Nominal-EuclideanDistance 0,213 0,009 0,833 0,699 0,755 0,798 3,198 3,493 00:00:36,546
BOA Nominal-FscoreSimilarity 0,244 0,021 0,842 0,841 0,829 0,832 3,197 3,196 00:00:31,750
BOA Numeric-EuclideanDistance 0,213 0,009 0,833 0,699 0,755 0,798 3,198 3,493 00:00:36,779
BOA Numeric-FscoreSimilarity 0,244 0,021 0,842 0,841 0,829 0,832 3,197 3,196 00:01:18,979
3-gram Nominal-EuclideanDistance 0,215 0,012 0,908 0,837 0,856 0,882 2,937 3,446 00:00:51,351
3-gram Nominal-FscoreSimilarity 0,196 0,006 0,862 0,729 0,782 0,826 3,149 3,243 00:00:34,812
3-gram Numeric-EuclideanDistance 0,215 0,012 0,908 0,837 0,856 0,882 2,937 3,446 00:00:53,631
3-gram Numeric-FscoreSimilarity 0,196 0,006 0,862 0,729 0,782 0,826 3,149 3,243 00:01:30,770
Markov - 0,288 0,007 0,936 0,780 0,847 0,897 3,130 3,108 09:50:21,000
Random - 0,272 0,006 0,850 0,800 0,820 0,836 3,106 3,109 00:00:17,614

No clustering - 0,198 0,006 0,821 0,985 0,895 0,849 3,540 3,540 NA

Table D.3: Results of different trace clustering techniques with varying parameter
settings for event log KIM in case of the creation of 5 clusters.
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Event log MCRM - 3 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,743 0,160 0,939 0,632 0,755 0,856 2,528 2,704 00:01:04,693
ActiTraCfreq mcs50tf100 0,743 0,160 0,939 0,632 0,755 0,856 2,528 2,704 00:01:03,013
ActiTraCfreq mcs100tf100 0,743 0,160 0,939 0,632 0,755 0,856 2,528 2,704 00:01:03,620
ActiTraCfreq mcs25tf95 0,613 0,090 0,939 0,619 0,743 0,848 2,603 2,792 00:00:18,503
ActiTraCfreq mcs50tf95 0,140 0,061 0,946 0,593 0,728 0,845 2,714 3,179 00:01:16,949
ActiTraCfreq mcs100tf95 0,140 0,061 0,946 0,593 0,728 0,845 2,714 3,179 00:01:16,152
ActiTraCMRA w25mcs25tf100 0,699 0,160 0,945 0,729 0,804 0,874 2,235 2,154 00:00:07,846
ActiTraCMRA w25mcs50tf100 0,720 0,160 0,944 0,724 0,807 0,879 2,454 2,354 00:00:17,045
ActiTraCMRA w25mcs100tf100 0,725 0,156 0,936 0,609 0,737 0,845 2,559 2,777 00:01:00,382
ActiTraCMRA w50mcs25tf100 0,699 0,160 0,945 0,729 0,804 0,874 2,235 2,154 00:00:07,862
ActiTraCMRA w50mcs50tf100 0,720 0,160 0,944 0,724 0,807 0,879 2,454 2,354 00:00:17,016
ActiTraCMRA w50mcs100tf100 0,725 0,156 0,936 0,609 0,737 0,845 2,559 2,777 00:01:01,430
ActiTraCMRA w100mcs25tf100 0,699 0,160 0,945 0,729 0,804 0,874 2,235 2,154 00:00:07,935
ActiTraCMRA w100mcs50tf100 0,720 0,160 0,944 0,724 0,807 0,879 2,454 2,354 00:00:17,128
ActiTraCMRA w100mcs100tf100 0,725 0,156 0,936 0,609 0,737 0,845 2,559 2,777 00:01:01,653
ActiTraCMRA w25mcs25tf95 0,691 0,113 0,950 0,700 0,796 0,877 2,425 2,462 00:00:09,953
ActiTraCMRA w25mcs50tf95 0,726 0,179 0,960 0,661 0,769 0,867 2,814 2,697 00:00:24,830
ActiTraCMRA w25mcs100tf95 0,187 0,061 0,950 0,585 0,723 0,844 2,718 3,117 00:01:09,874
ActiTraCMRA w50mcs25tf95 0,691 0,113 0,950 0,700 0,796 0,877 2,425 2,462 00:00:09,907
ActiTraCMRA w50mcs50tf95 0,726 0,179 0,960 0,661 0,769 0,867 2,814 2,697 00:00:24,907
ActiTraCMRA w50mcs100tf95 0,187 0,061 0,950 0,585 0,723 0,844 2,718 3,117 00:01:10,561
ActiTraCMRA w100mcs25tf95 0,691 0,113 0,950 0,700 0,796 0,877 2,425 2,462 00:00:09,985
ActiTraCMRA w100mcs50tf95 0,726 0,179 0,960 0,661 0,769 0,867 2,814 2,697 00:00:25,405
ActiTraCMRA w100mcs100tf95 0,187 0,061 0,950 0,585 0,723 0,844 2,718 3,117 00:01:11,139

MR Nominal-EuclideanDistance 0,000 0,000 0,720 0,564 0,619 0,669 3,024 2,825 00:00:04,356
MR Nominal-FscoreSimilarity 0,000 0,000 0,793 0,630 0,689 0,742 2,838 2,830 00:00:03,919
MR Numeric-EuclideanDistance 0,000 0,000 0,720 0,564 0,619 0,669 3,024 2,825 00:00:04,808
MR Numeric-FscoreSimilarity 0,000 0,000 0,793 0,630 0,689 0,742 2,838 2,830 00:00:03,574
MRA Nominal-EuclideanDistance 0,000 0,000 0,716 0,590 0,634 0,674 3,003 2,803 00:00:04,636
MRA Nominal-FscoreSimilarity 0,000 0,000 0,712 0,568 0,613 0,658 3,032 2,819 00:00:04,136
MRA Numeric-EuclideanDistance 0,000 0,000 0,716 0,590 0,634 0,674 3,003 2,803 00:00:04,543
MRA Numeric-FscoreSimilarity 0,000 0,000 0,712 0,568 0,613 0,658 3,032 2,819 00:00:03,934
GED - 0,000 0,000 0,796 0,718 0,740 0,766 2,828 2,830 00:00:05,651
LED - 0,000 0,000 0,713 0,590 0,633 0,672 3,118 2,826 00:00:02,732
BOA Nominal-EuclideanDistance 0,000 0,000 0,715 0,596 0,636 0,675 3,177 2,972 00:00:02,528
BOA Nominal-FscoreSimilarity 0,000 0,000 0,715 0,594 0,635 0,673 3,171 2,972 00:00:02,607
BOA Numeric-EuclideanDistance 0,000 0,000 0,715 0,596 0,636 0,675 3,177 2,972 00:00:02,561
BOA Numeric-FscoreSimilarity 0,000 0,000 0,715 0,594 0,635 0,673 3,171 2,972 00:00:02,654
3-gram Nominal-EuclideanDistance 0,000 0,000 0,860 0,537 0,656 0,762 3,290 3,399 00:00:02,735
3-gram Nominal-FscoreSimilarity 0,000 0,000 0,868 0,534 0,660 0,770 3,098 3,197 00:00:02,541
3-gram Numeric-EuclideanDistance 0,000 0,000 0,860 0,537 0,656 0,762 3,290 3,399 00:00:02,873
3-gram Numeric-FscoreSimilarity 0,000 0,000 0,868 0,534 0,660 0,770 3,098 3,197 00:00:02,478
Markov - 0,000 0,000 0,867 0,598 0,695 0,782 3,022 3,032 00:00:40,000
Random - 0,008 0,003 0,831 0,485 0,607 0,721 3,060 3,061 00:00:01,225

No clustering - 0,000 0,000 0,801 0,376 0,512 0,654 3,226 3,226 NA

Table D.4: Results of different trace clustering techniques with varying parameter
settings for event log MCRM in case of the creation of 3 clusters.
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Event log MCRM - 4 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,743 0,160 0,950 0,671 0,786 0,877 2,452 2,679 00:01:05,625
ActiTraCfreq mcs50tf100 0,743 0,160 0,950 0,671 0,786 0,877 2,452 2,679 00:01:04,690
ActiTraCfreq mcs100tf100 0,743 0,160 0,950 0,671 0,786 0,877 2,452 2,679 00:01:04,268
ActiTraCfreq mcs25tf95 0,614 0,094 0,940 0,622 0,746 0,849 2,540 2,783 00:00:19,881
ActiTraCfreq mcs50tf95 0,142 0,071 0,946 0,599 0,732 0,847 2,625 3,160 00:01:16,634
ActiTraCfreq mcs100tf95 0,142 0,071 0,946 0,599 0,732 0,847 2,625 3,160 00:01:16,537
ActiTraCMRA w25mcs25tf100 0,738 0,175 0,951 0,757 0,824 0,886 2,301 2,180 00:00:11,752
ActiTraCMRA w25mcs50tf100 0,740 0,170 0,946 0,729 0,811 0,882 2,391 2,347 00:00:19,214
ActiTraCMRA w25mcs100tf100 0,745 0,165 0,938 0,618 0,745 0,850 2,469 2,769 00:01:03,466
ActiTraCMRA w50mcs25tf100 0,738 0,175 0,951 0,757 0,824 0,886 2,301 2,180 00:00:11,442
ActiTraCMRA w50mcs50tf100 0,740 0,170 0,946 0,729 0,811 0,882 2,391 2,347 00:00:18,571
ActiTraCMRA w50mcs100tf100 0,745 0,165 0,938 0,618 0,745 0,850 2,469 2,769 00:01:02,394
ActiTraCMRA w100mcs25tf100 0,738 0,175 0,951 0,757 0,824 0,886 2,301 2,180 00:00:11,558
ActiTraCMRA w100mcs50tf100 0,740 0,170 0,946 0,729 0,811 0,882 2,391 2,347 00:00:19,024
ActiTraCMRA w100mcs100tf100 0,745 0,165 0,938 0,618 0,745 0,850 2,469 2,769 00:01:02,935
ActiTraCMRA w25mcs25tf95 0,721 0,142 0,953 0,717 0,808 0,885 2,460 2,470 00:00:12,960
ActiTraCMRA w25mcs50tf95 0,726 0,179 0,960 0,669 0,775 0,870 2,667 2,684 00:00:25,547
ActiTraCMRA w25mcs100tf95 0,190 0,066 0,950 0,587 0,725 0,845 2,514 3,114 00:01:10,619
ActiTraCMRA w50mcs25tf95 0,721 0,142 0,953 0,717 0,808 0,885 2,460 2,470 00:00:12,696
ActiTraCMRA w50mcs50tf95 0,726 0,179 0,960 0,669 0,775 0,870 2,667 2,684 00:00:25,060
ActiTraCMRA w50mcs100tf95 0,190 0,066 0,950 0,587 0,725 0,845 2,514 3,114 00:01:10,950
ActiTraCMRA w100mcs25tf95 0,721 0,142 0,953 0,717 0,808 0,885 2,460 2,470 00:00:12,756
ActiTraCMRA w100mcs50tf95 0,726 0,179 0,960 0,669 0,775 0,870 2,667 2,684 00:00:25,325
ActiTraCMRA w100mcs100tf95 0,190 0,066 0,950 0,587 0,725 0,845 2,514 3,114 00:01:11,163

MR Nominal-EuclideanDistance 0,000 0,000 0,713 0,558 0,611 0,660 2,886 2,773 00:00:04,559
MR Nominal-FscoreSimilarity 0,000 0,000 0,788 0,619 0,677 0,731 2,840 2,792 00:00:03,574
MR Numeric-EuclideanDistance 0,000 0,000 0,713 0,558 0,611 0,660 2,886 2,773 00:00:04,559
MR Numeric-FscoreSimilarity 0,000 0,000 0,788 0,619 0,677 0,731 2,840 2,792 00:00:03,669
MRA Nominal-EuclideanDistance 0,000 0,000 0,719 0,578 0,622 0,666 2,940 2,781 00:00:04,355
MRA Nominal-FscoreSimilarity 0,000 0,000 0,784 0,588 0,648 0,711 2,962 2,796 00:00:03,403
MRA Numeric-EuclideanDistance 0,000 0,000 0,719 0,578 0,622 0,666 2,940 2,781 00:00:04,262
MRA Numeric-FscoreSimilarity 0,000 0,000 0,784 0,588 0,648 0,711 2,962 2,796 00:00:03,902
GED - 0,000 0,000 0,802 0,697 0,718 0,752 2,830 2,793 00:00:05,589
LED - 0,000 0,000 0,799 0,706 0,733 0,764 3,017 2,936 00:00:02,779
BOA Nominal-EuclideanDistance 0,000 0,000 0,715 0,596 0,637 0,675 3,029 2,965 00:00:02,560
BOA Nominal-FscoreSimilarity 0,000 0,000 0,800 0,724 0,741 0,766 2,963 2,790 00:00:02,419
BOA Numeric-EuclideanDistance 0,000 0,000 0,715 0,596 0,637 0,675 3,029 2,965 00:00:02,561
BOA Numeric-FscoreSimilarity 0,000 0,000 0,800 0,724 0,741 0,766 2,963 2,790 00:00:02,493
3-gram Nominal-EuclideanDistance 0,000 0,000 0,862 0,554 0,672 0,772 3,131 3,348 00:00:02,992
3-gram Nominal-FscoreSimilarity 0,132 0,066 0,902 0,553 0,684 0,799 2,873 3,119 00:00:02,541
3-gram Numeric-EuclideanDistance 0,000 0,000 0,862 0,554 0,672 0,772 3,131 3,348 00:00:02,810
3-gram Numeric-FscoreSimilarity 0,132 0,066 0,902 0,553 0,684 0,799 2,873 3,119 00:00:02,571
Markov - 0,485 0,028 0,922 0,570 0,694 0,809 2,902 2,816 00:00:53,000
Random - 0,002 0,002 0,823 0,474 0,592 0,707 2,997 2,972 00:00:01,245

No clustering - 0,000 0,000 0,801 0,376 0,512 0,654 3,226 3,226 NA

Table D.5: Results of different trace clustering techniques with varying parameter
settings for event log MCRM in case of the creation of 4 clusters.
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Event log MCRM - 5 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,763 0,193 0,953 0,674 0,789 0,879 2,442 2,670 00:01:07,595
ActiTraCfreq mcs50tf100 0,763 0,193 0,953 0,674 0,789 0,879 2,442 2,670 00:01:05,959
ActiTraCfreq mcs100tf100 0,763 0,193 0,953 0,674 0,789 0,879 2,442 2,670 00:01:05,593
ActiTraCfreq mcs25tf95 0,619 0,113 0,941 0,626 0,748 0,851 2,481 2,781 00:00:20,164
ActiTraCfreq mcs50tf95 0,142 0,071 0,946 0,600 0,733 0,847 2,516 3,157 00:01:16,414
ActiTraCfreq mcs100tf95 0,142 0,071 0,946 0,600 0,733 0,847 2,516 3,157 00:01:15,949
ActiTraCMRA w25mcs25tf100 0,755 0,193 0,961 0,782 0,842 0,901 2,361 2,201 00:00:14,409
ActiTraCMRA w25mcs50tf100 0,740 0,170 0,956 0,769 0,839 0,901 2,358 2,339 00:00:18,901
ActiTraCMRA w25mcs100tf100 0,745 0,165 0,950 0,656 0,776 0,872 2,420 2,735 00:01:02,845
ActiTraCMRA w50mcs25tf100 0,755 0,193 0,961 0,782 0,842 0,901 2,361 2,201 00:00:14,316
ActiTraCMRA w50mcs50tf100 0,740 0,170 0,956 0,769 0,839 0,901 2,358 2,339 00:00:19,047
ActiTraCMRA w50mcs100tf100 0,745 0,165 0,950 0,656 0,776 0,872 2,420 2,735 00:01:02,547
ActiTraCMRA w100mcs25tf100 0,755 0,193 0,961 0,782 0,842 0,901 2,361 2,201 00:00:14,111
ActiTraCMRA w100mcs50tf100 0,740 0,170 0,956 0,769 0,839 0,901 2,358 2,339 00:00:18,799
ActiTraCMRA w100mcs100tf100 0,745 0,165 0,950 0,656 0,776 0,872 2,420 2,735 00:01:02,433
ActiTraCMRA w25mcs25tf95 0,721 0,142 0,956 0,724 0,814 0,890 2,413 2,458 00:00:12,793
ActiTraCMRA w25mcs50tf95 0,732 0,184 0,962 0,677 0,782 0,875 2,648 2,673 00:00:25,959
ActiTraCMRA w25mcs100tf95 0,192 0,071 0,952 0,601 0,734 0,850 2,528 3,105 00:01:10,866
ActiTraCMRA w50mcs25tf95 0,721 0,142 0,956 0,724 0,814 0,890 2,413 2,458 00:00:12,792
ActiTraCMRA w50mcs50tf95 0,732 0,184 0,962 0,677 0,782 0,875 2,648 2,673 00:00:25,979
ActiTraCMRA w50mcs100tf95 0,192 0,071 0,952 0,601 0,734 0,850 2,528 3,105 00:01:10,942
ActiTraCMRA w100mcs25tf95 0,721 0,142 0,956 0,724 0,814 0,890 2,413 2,458 00:00:12,724
ActiTraCMRA w100mcs50tf95 0,732 0,184 0,962 0,677 0,782 0,875 2,648 2,673 00:00:25,791
ActiTraCMRA w100mcs100tf95 0,192 0,071 0,952 0,601 0,734 0,850 2,528 3,105 00:01:11,304

MR Nominal-EuclideanDistance 0,000 0,000 0,786 0,688 0,711 0,743 2,837 2,756 00:00:04,543
MR Nominal-FscoreSimilarity 0,000 0,000 0,796 0,623 0,683 0,737 2,772 2,768 00:00:03,746
MR Numeric-EuclideanDistance 0,000 0,000 0,786 0,688 0,711 0,743 2,837 2,756 00:00:04,542
MR Numeric-FscoreSimilarity 0,000 0,000 0,796 0,623 0,683 0,737 2,772 2,768 00:00:03,653
MRA Nominal-EuclideanDistance 0,000 0,000 0,803 0,637 0,690 0,742 2,905 2,953 00:00:04,121
MRA Nominal-FscoreSimilarity 0,000 0,000 0,790 0,590 0,651 0,716 2,904 2,764 00:00:03,372
MRA Numeric-EuclideanDistance 0,000 0,000 0,803 0,637 0,690 0,742 2,905 2,953 00:00:04,480
MRA Numeric-FscoreSimilarity 0,000 0,000 0,790 0,590 0,651 0,716 2,904 2,764 00:00:03,887
GED - 0,000 0,000 0,807 0,703 0,726 0,759 2,920 2,796 00:00:05,542
LED - 0,000 0,000 0,806 0,690 0,718 0,754 2,896 2,901 00:00:02,716
BOA Nominal-EuclideanDistance 0,000 0,000 0,800 0,718 0,739 0,766 2,921 2,895 00:00:02,513
BOA Nominal-FscoreSimilarity 0,030 0,028 0,803 0,717 0,735 0,763 2,873 2,775 00:00:02,560
BOA Numeric-EuclideanDistance 0,000 0,000 0,800 0,718 0,739 0,766 2,921 2,895 00:00:02,654
BOA Numeric-FscoreSimilarity 0,030 0,028 0,803 0,717 0,735 0,763 2,873 2,775 00:00:02,364
3-gram Nominal-EuclideanDistance 0,000 0,000 0,860 0,595 0,699 0,785 3,026 3,256 00:00:02,912
3-gram Nominal-FscoreSimilarity 0,132 0,066 0,926 0,475 0,626 0,776 2,904 3,213 00:00:02,510
3-gram Numeric-EuclideanDistance 0,000 0,000 0,860 0,595 0,699 0,785 3,026 3,256 00:00:02,967
3-gram Numeric-FscoreSimilarity 0,132 0,066 0,926 0,475 0,626 0,776 2,904 3,213 00:00:02,477
Markov - 0,009 0,009 0,832 0,536 0,637 0,734 2,991 2,812 00:01:12,000
Random - 0,096 0,005 0,819 0,461 0,583 0,701 2,897 2,929 00:00:01,183

No clustering - 0,000 0,000 0,801 0,376 0,512 0,654 3,226 3,226 NA

Table D.6: Results of different trace clustering techniques with varying parameter
settings for event log MCRM in case of the creation of 5 clusters.
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Event log TSL - 3 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,880 0,260 0,969 0,898 0,931 0,953 3,404 3,440 00:04:15,945
ActiTraCfreq mcs50tf100 0,881 0,257 0,969 0,904 0,935 0,955 3,332 3,423 00:13:12,506
ActiTraCfreq mcs100tf100 0,878 0,232 0,967 0,894 0,929 0,952 3,255 3,508 01:47:02,954
ActiTraCfreq mcs25tf95 0,786 0,181 0,956 0,891 0,921 0,941 3,751 4,085 00:07:22,314
ActiTraCfreq mcs50tf95 0,785 0,176 0,956 0,891 0,921 0,941 3,747 4,086 00:11:36,337
ActiTraCfreq mcs100tf95 0,055 0,037 0,946 0,782 0,856 0,908 3,601 4,136 01:54:45,520
ActiTraCMRA w25mcs25tf100 0,821 0,318 0,949 0,843 0,892 0,925 3,061 3,145 00:00:31,624
ActiTraCMRA w25mcs50tf100 0,833 0,195 0,954 0,836 0,890 0,927 3,323 3,551 00:20:26,875
ActiTraCMRA w25mcs100tf100 0,839 0,202 0,954 0,828 0,886 0,926 3,379 3,441 01:29:30,551
ActiTraCMRA w50mcs25tf100 0,749 0,248 0,929 0,803 0,859 0,899 3,279 3,274 00:09:40,142
ActiTraCMRA w50mcs50tf100 0,833 0,195 0,954 0,836 0,890 0,927 3,323 3,551 00:20:09,719
ActiTraCMRA w50mcs100tf100 0,839 0,202 0,954 0,828 0,886 0,926 3,379 3,441 01:28:28,770
ActiTraCMRA w100mcs25tf100 0,749 0,248 0,929 0,803 0,859 0,899 3,279 3,274 00:09:39,344
ActiTraCMRA w100mcs50tf100 0,833 0,195 0,954 0,836 0,890 0,927 3,323 3,551 00:20:11,454
ActiTraCMRA w100mcs100tf100 0,839 0,202 0,954 0,828 0,886 0,926 3,379 3,441 01:28:30,583
ActiTraCMRA w25mcs25tf95 0,425 0,072 0,934 0,769 0,841 0,894 3,750 3,927 00:04:51,664
ActiTraCMRA w25mcs50tf95 0,402 0,082 0,948 0,831 0,885 0,922 3,657 3,749 00:09:48,188
ActiTraCMRA w25mcs100tf95 0,372 0,077 0,942 0,794 0,861 0,908 3,731 3,997 01:40:37,355
ActiTraCMRA w50mcs25tf95 0,425 0,072 0,934 0,769 0,841 0,894 3,750 3,927 00:04:46,961
ActiTraCMRA w50mcs50tf95 0,402 0,082 0,948 0,831 0,885 0,922 3,657 3,749 00:09:40,203
ActiTraCMRA w50mcs100tf95 0,372 0,078 0,943 0,794 0,861 0,908 3,731 3,997 01:40:27,659
ActiTraCMRA w100mcs25tf95 0,425 0,072 0,934 0,769 0,841 0,894 3,750 3,927 00:04:47,367
ActiTraCMRA w100mcs50tf95 0,402 0,082 0,948 0,831 0,885 0,922 3,657 3,749 00:09:40,001
ActiTraCMRA w100mcs100tf95 0,372 0,078 0,943 0,794 0,861 0,908 3,731 3,997 01:40:30,502

MR Nominal-EuclideanDistance 0,029 0,012 0,731 0,794 0,742 0,727 4,239 4,230 00:05:23,069
MR Nominal-FscoreSimilarity 0,037 0,009 0,696 0,740 0,690 0,682 4,290 4,290 00:01:52,132
MR Numeric-EuclideanDistance 0,029 0,012 0,731 0,794 0,742 0,727 4,239 4,230 00:05:22,772
MR Numeric-FscoreSimilarity 0,037 0,009 0,696 0,740 0,690 0,682 4,290 4,290 00:01:58,601
MRA Nominal-EuclideanDistance 0,039 0,013 0,829 0,725 0,771 0,803 3,915 4,556 00:03:17,857
MRA Nominal-FscoreSimilarity 0,398 0,024 0,793 0,750 0,768 0,782 4,535 4,820 00:01:58,146
MRA Numeric-EuclideanDistance 0,039 0,013 0,829 0,725 0,771 0,803 3,915 4,556 00:03:14,172
MRA Numeric-FscoreSimilarity 0,398 0,024 0,793 0,750 0,768 0,782 4,535 4,820 00:02:04,288
GED - 0,032 0,019 0,732 0,727 0,712 0,717 4,298 4,162 00:02:14,364
LED - 0,066 0,015 0,742 0,604 0,659 0,703 4,412 4,161 00:01:58,772
BOA Nominal-EuclideanDistance 0,035 0,007 0,767 0,595 0,664 0,719 4,412 4,447 00:01:38,274
BOA Nominal-FscoreSimilarity 0,051 0,021 0,726 0,534 0,605 0,668 4,327 4,291 00:01:20,259
BOA Numeric-EuclideanDistance 0,035 0,007 0,767 0,595 0,664 0,719 4,412 4,447 00:01:48,898
BOA Numeric-FscoreSimilarity 0,051 0,021 0,726 0,534 0,605 0,668 4,327 4,291 00:01:10,411
3-gram Nominal-EuclideanDistance 0,039 0,016 0,746 0,854 0,795 0,764 3,667 4,355 00:04:34,151
3-gram Nominal-FscoreSimilarity 0,038 0,014 0,696 0,785 0,735 0,710 4,224 4,153 00:02:23,981
3-gram Numeric-EuclideanDistance 0,039 0,016 0,746 0,854 0,795 0,764 3,667 4,355 00:04:34,052
3-gram Numeric-FscoreSimilarity 0,038 0,014 0,696 0,785 0,735 0,710 4,224 4,153 00:02:21,077
Markov - 0,111 0,013 0,818 0,695 0,751 0,790 4,148 4,124 03:59:18,000
Random - 0,093 0,013 0,725 0,596 0,650 0,692 4,035 4,034 00:00:22,746

No clustering - 0,037 0,009 0,745 0,862 0,799 0,766 4,368 4,368 NA

Table D.7: Results of different trace clustering techniques with varying parameter
settings for event log TSL in case of the creation of 3 clusters.
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Event log TSL - 4 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,889 0,271 0,971 0,901 0,933 0,955 3,338 3,435 00:05:13,258
ActiTraCfreq mcs50tf100 0,890 0,273 0,972 0,907 0,937 0,957 3,301 3,420 00:13:57,369
ActiTraCfreq mcs100tf100 0,889 0,251 0,970 0,895 0,931 0,954 3,227 3,503 01:46:44,227
ActiTraCfreq mcs25tf95 0,788 0,188 0,957 0,892 0,922 0,942 3,578 4,076 00:07:55,394
ActiTraCfreq mcs50tf95 0,787 0,182 0,957 0,891 0,921 0,942 3,594 4,078 00:12:04,481
ActiTraCfreq mcs100tf95 0,056 0,042 0,946 0,782 0,856 0,908 3,425 4,131 01:53:03,436
ActiTraCMRA w25mcs25tf100 0,849 0,309 0,960 0,863 0,907 0,937 3,106 3,149 00:04:36,821
ActiTraCMRA w25mcs50tf100 0,848 0,212 0,958 0,843 0,896 0,932 3,362 3,551 00:21:57,379
ActiTraCMRA w25mcs100tf100 0,859 0,221 0,960 0,835 0,893 0,932 3,301 3,430 01:30:08,754
ActiTraCMRA w50mcs25tf100 0,783 0,257 0,940 0,799 0,860 0,905 3,283 3,276 00:13:21,746
ActiTraCMRA w50mcs50tf100 0,848 0,212 0,958 0,843 0,896 0,932 3,362 3,551 00:21:44,170
ActiTraCMRA w50mcs100tf100 0,859 0,221 0,960 0,835 0,893 0,932 3,301 3,430 01:30:05,868
ActiTraCMRA w100mcs25tf100 0,783 0,257 0,940 0,799 0,860 0,905 3,283 3,276 00:13:21,964
ActiTraCMRA w100mcs50tf100 0,848 0,212 0,958 0,843 0,896 0,932 3,362 3,551 00:21:43,482
ActiTraCMRA w100mcs100tf100 0,859 0,221 0,960 0,835 0,893 0,932 3,301 3,430 01:30:05,858
ActiTraCMRA w25mcs25tf95 0,454 0,112 0,945 0,788 0,857 0,907 3,632 3,885 00:06:30,693
ActiTraCMRA w25mcs50tf95 0,403 0,087 0,954 0,832 0,887 0,925 3,611 3,740 00:10:49,350
ActiTraCMRA w25mcs100tf95 0,374 0,084 0,944 0,794 0,861 0,908 3,590 3,992 01:40:46,079
ActiTraCMRA w50mcs25tf95 0,453 0,108 0,945 0,793 0,860 0,908 3,673 3,897 00:06:41,427
ActiTraCMRA w50mcs50tf95 0,403 0,087 0,954 0,832 0,887 0,925 3,611 3,740 00:10:50,032
ActiTraCMRA w50mcs100tf95 0,374 0,084 0,944 0,794 0,861 0,908 3,590 3,992 01:40:45,126
ActiTraCMRA w100mcs25tf95 0,453 0,108 0,945 0,793 0,860 0,908 3,673 3,897 00:06:41,068
ActiTraCMRA w100mcs50tf95 0,403 0,087 0,954 0,832 0,887 0,925 3,611 3,740 00:10:49,890
ActiTraCMRA w100mcs100tf95 0,374 0,084 0,944 0,794 0,861 0,908 3,590 3,992 01:40:43,470

MR Nominal-EuclideanDistance 0,039 0,018 0,725 0,740 0,713 0,711 4,212 4,234 00:05:10,851
MR Nominal-FscoreSimilarity 0,030 0,009 0,691 0,683 0,661 0,668 4,211 4,110 00:01:59,069
MR Numeric-EuclideanDistance 0,039 0,018 0,725 0,740 0,713 0,711 4,212 4,234 00:05:14,382
MR Numeric-FscoreSimilarity 0,030 0,009 0,691 0,683 0,661 0,668 4,211 4,110 00:01:57,351
MRA Nominal-EuclideanDistance 0,449 0,030 0,818 0,751 0,778 0,800 4,061 4,634 00:03:10,842
MRA Nominal-FscoreSimilarity 0,398 0,024 0,792 0,743 0,762 0,778 4,497 4,814 00:02:03,287
MRA Numeric-EuclideanDistance 0,449 0,030 0,818 0,751 0,778 0,800 4,061 4,634 00:03:08,845
MRA Numeric-FscoreSimilarity 0,398 0,024 0,792 0,743 0,762 0,778 4,497 4,814 00:02:05,975
GED - 0,042 0,019 0,738 0,746 0,721 0,721 4,126 4,055 00:02:18,849
LED - 0,068 0,015 0,763 0,636 0,686 0,725 4,164 4,273 00:01:59,631
BOA Nominal-EuclideanDistance 0,104 0,022 0,773 0,561 0,643 0,711 4,318 4,304 00:01:43,867
BOA Nominal-FscoreSimilarity 0,050 0,020 0,724 0,527 0,598 0,663 4,300 4,313 00:01:28,337
BOA Numeric-EuclideanDistance 0,104 0,022 0,773 0,561 0,643 0,711 4,318 4,304 00:01:49,273
BOA Numeric-FscoreSimilarity 0,050 0,020 0,724 0,527 0,598 0,663 4,300 4,313 00:01:22,888
3-gram Nominal-EuclideanDistance 0,040 0,020 0,730 0,808 0,761 0,740 3,915 4,392 00:04:36,825
3-gram Nominal-FscoreSimilarity 0,038 0,010 0,689 0,630 0,651 0,671 4,206 4,298 00:02:21,842
3-gram Numeric-EuclideanDistance 0,040 0,020 0,730 0,808 0,761 0,740 3,915 4,392 00:04:31,477
3-gram Numeric-FscoreSimilarity 0,038 0,010 0,689 0,630 0,651 0,671 4,206 4,298 00:02:24,340
Markov - 0,129 0,025 0,820 0,607 0,690 0,760 4,308 4,348 05:16:54,000
Random - 0,132 0,015 0,767 0,619 0,683 0,731 4,004 4,007 00:00:22,966

No clustering - 0,037 0,009 0,745 0,862 0,799 0,766 4,368 4,368 NA

Table D.8: Results of different trace clustering techniques with varying parameter
settings for event log TSL in case of the creation of 4 clusters.
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Event log TSL - 5 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,894 0,281 0,972 0,902 0,934 0,956 3,296 3,433 00:05:49,320
ActiTraCfreq mcs50tf100 0,895 0,284 0,973 0,907 0,938 0,958 3,267 3,417 00:14:32,306
ActiTraCfreq mcs100tf100 0,895 0,269 0,972 0,896 0,932 0,955 3,248 3,502 01:47:10,398
ActiTraCfreq mcs25tf95 0,791 0,197 0,958 0,893 0,923 0,943 3,493 4,069 00:08:20,909
ActiTraCfreq mcs50tf95 0,790 0,191 0,959 0,892 0,922 0,943 3,503 4,071 00:12:30,106
ActiTraCfreq mcs100tf95 0,057 0,047 0,947 0,783 0,856 0,908 3,288 4,127 01:53:04,998
ActiTraCMRA w25mcs25tf100 0,878 0,327 0,968 0,873 0,916 0,946 3,129 3,154 00:09:41,141
ActiTraCMRA w25mcs50tf100 0,860 0,231 0,962 0,846 0,899 0,935 3,421 3,554 00:22:40,387
ActiTraCMRA w25mcs100tf100 0,874 0,246 0,966 0,841 0,898 0,937 3,282 3,426 01:31:16,577
ActiTraCMRA w50mcs25tf100 0,837 0,278 0,957 0,815 0,877 0,922 3,310 3,290 00:17:04,771
ActiTraCMRA w50mcs50tf100 0,860 0,231 0,962 0,846 0,899 0,935 3,421 3,554 00:22:41,324
ActiTraCMRA w50mcs100tf100 0,874 0,246 0,966 0,841 0,898 0,937 3,282 3,426 01:31:14,891
ActiTraCMRA w100mcs25tf100 0,837 0,278 0,957 0,815 0,877 0,922 3,310 3,290 00:17:04,599
ActiTraCMRA w100mcs50tf100 0,860 0,231 0,962 0,846 0,899 0,935 3,421 3,554 00:22:41,043
ActiTraCMRA w100mcs100tf100 0,874 0,246 0,966 0,841 0,898 0,937 3,282 3,426 01:31:18,757
ActiTraCMRA w25mcs25tf95 0,458 0,124 0,947 0,792 0,860 0,909 3,591 3,881 00:07:06,677
ActiTraCMRA w25mcs50tf95 0,412 0,101 0,957 0,831 0,886 0,926 3,553 3,728 00:11:55,981
ActiTraCMRA w25mcs100tf95 0,376 0,090 0,945 0,796 0,862 0,909 3,532 3,988 01:41:08,298
ActiTraCMRA w50mcs25tf95 0,457 0,121 0,950 0,806 0,870 0,915 3,624 3,886 00:07:24,067
ActiTraCMRA w50mcs50tf95 0,412 0,101 0,957 0,831 0,886 0,926 3,553 3,728 00:11:56,794
ActiTraCMRA w50mcs100tf95 0,376 0,090 0,945 0,795 0,861 0,909 3,534 3,989 01:41:07,439
ActiTraCMRA w100mcs25tf95 0,457 0,121 0,950 0,806 0,870 0,915 3,624 3,886 00:07:24,114
ActiTraCMRA w100mcs50tf95 0,412 0,101 0,957 0,831 0,886 0,926 3,553 3,728 00:11:57,169
ActiTraCMRA w100mcs100tf95 0,376 0,090 0,945 0,795 0,861 0,909 3,534 3,989 01:41:11,594

MR Nominal-EuclideanDistance 0,039 0,021 0,725 0,736 0,709 0,709 4,022 4,260 00:05:32,381
MR Nominal-FscoreSimilarity 0,040 0,016 0,713 0,544 0,605 0,659 4,110 4,041 00:01:54,179
MR Numeric-EuclideanDistance 0,039 0,021 0,725 0,736 0,709 0,709 4,022 4,260 00:05:23,460
MR Numeric-FscoreSimilarity 0,040 0,016 0,713 0,544 0,605 0,659 4,110 4,041 00:01:50,788
MRA Nominal-EuclideanDistance 0,449 0,030 0,820 0,745 0,773 0,798 4,013 4,656 00:03:14,500
MRA Nominal-FscoreSimilarity 0,407 0,038 0,815 0,739 0,769 0,794 4,522 4,838 00:01:55,757
MRA Numeric-EuclideanDistance 0,449 0,030 0,820 0,745 0,773 0,798 4,013 4,656 00:03:10,485
MRA Numeric-FscoreSimilarity 0,407 0,038 0,815 0,739 0,769 0,794 4,522 4,838 00:02:04,662
GED - 0,042 0,019 0,750 0,643 0,677 0,711 4,045 4,083 00:02:17,974
LED - 0,075 0,022 0,764 0,588 0,655 0,711 4,193 4,350 00:01:59,899
BOA Nominal-EuclideanDistance 0,097 0,019 0,778 0,547 0,632 0,707 4,248 4,318 00:01:44,054
BOA Nominal-FscoreSimilarity 0,051 0,024 0,744 0,526 0,600 0,671 4,310 4,273 00:01:30,727
BOA Numeric-EuclideanDistance 0,097 0,019 0,778 0,547 0,632 0,707 4,248 4,318 00:01:49,429
BOA Numeric-FscoreSimilarity 0,051 0,024 0,744 0,526 0,600 0,671 4,310 4,273 00:01:23,686
3-gram Nominal-EuclideanDistance 0,040 0,020 0,722 0,784 0,739 0,724 3,978 4,371 00:04:33,364
3-gram Nominal-FscoreSimilarity 0,041 0,015 0,695 0,623 0,650 0,674 4,114 4,137 00:02:20,000
3-gram Numeric-EuclideanDistance 0,040 0,020 0,722 0,784 0,739 0,724 3,978 4,371 00:04:38,705
3-gram Numeric-FscoreSimilarity 0,041 0,015 0,695 0,623 0,650 0,674 4,114 4,137 00:02:17,722
Markov - 0,222 0,045 0,831 0,709 0,764 0,803 3,912 3,883 05:34:30,000
Random - 0,175 0,016 0,773 0,615 0,681 0,732 4,074 4,046 00:00:26,272

No clustering - 0,037 0,009 0,745 0,862 0,799 0,766 4,368 4,368 NA

Table D.9: Results of different trace clustering techniques with varying parameter
settings for event log TSL in case of the creation of 5 clusters.
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Event log ICP - 3 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,829 0,304 0,961 0,812 0,865 0,911 3,638 2,750 00:03:32,119
ActiTraCfreq mcs50tf100 0,862 0,240 0,966 0,509 0,662 0,813 4,136 4,128 00:47:53,592
ActiTraCfreq mcs100tf100 0,862 0,240 0,966 0,509 0,662 0,813 4,136 4,128 00:47:55,451
ActiTraCfreq mcs25tf95 0,760 0,257 0,969 0,818 0,873 0,923 3,376 2,758 00:00:42,890
ActiTraCfreq mcs50tf95 0,159 0,063 0,946 0,339 0,497 0,692 4,590 5,053 00:12:09,653
ActiTraCfreq mcs100tf95 0,170 0,055 0,947 0,318 0,476 0,679 4,423 5,408 00:49:43,549
ActiTraCMRA w25mcs25tf100 0,793 0,265 0,949 0,735 0,791 0,858 3,910 3,207 00:07:32,160
ActiTraCMRA w25mcs50tf100 0,770 0,223 0,943 0,633 0,730 0,827 4,172 3,717 00:07:47,722
ActiTraCMRA w25mcs100tf100 0,803 0,216 0,952 0,474 0,631 0,789 4,091 4,493 00:43:44,261
ActiTraCMRA w50mcs25tf100 0,781 0,315 0,947 0,740 0,810 0,874 2,904 2,717 00:04:09,619
ActiTraCMRA w50mcs50tf100 0,740 0,177 0,935 0,512 0,654 0,792 3,862 3,830 00:16:46,802
ActiTraCMRA w50mcs100tf100 0,792 0,192 0,946 0,509 0,659 0,804 3,768 3,889 00:36:41,382
ActiTraCMRA w100mcs25tf100 0,781 0,315 0,947 0,742 0,812 0,876 2,889 2,708 00:04:14,681
ActiTraCMRA w100mcs50tf100 0,740 0,177 0,935 0,514 0,656 0,793 3,841 3,819 00:16:36,147
ActiTraCMRA w100mcs100tf100 0,792 0,192 0,946 0,509 0,659 0,804 3,768 3,889 00:36:20,195
ActiTraCMRA w25mcs25tf95 0,017 0,028 0,953 0,361 0,523 0,717 5,137 5,301 00:12:11,825
ActiTraCMRA w25mcs50tf95 0,052 0,043 0,958 0,365 0,528 0,721 5,164 5,285 00:17:44,223
ActiTraCMRA w25mcs100tf95 0,019 0,012 0,953 0,329 0,487 0,687 5,189 5,740 00:45:38,836
ActiTraCMRA w50mcs25tf95 0,567 0,060 0,931 0,446 0,594 0,752 5,964 6,315 00:08:23,034
ActiTraCMRA w50mcs50tf95 0,610 0,033 0,949 0,482 0,614 0,757 5,915 7,319 00:14:09,541
ActiTraCMRA w50mcs100tf95 0,032 0,032 0,957 0,331 0,490 0,690 6,019 7,256 00:49:33,285
ActiTraCMRA w100mcs25tf95 0,542 0,049 0,934 0,449 0,596 0,754 5,898 6,270 00:08:28,268
ActiTraCMRA w100mcs50tf95 0,606 0,024 0,946 0,480 0,615 0,760 5,889 7,367 00:13:48,760
ActiTraCMRA w100mcs100tf95 0,083 0,045 0,955 0,335 0,495 0,696 4,916 5,975 00:48:36,910

MR Nominal-EuclideanDistance 0,551 0,055 0,870 0,515 0,622 0,734 6,224 5,966 00:03:01,477
MR Nominal-FscoreSimilarity 0,392 0,042 0,846 0,550 0,645 0,742 6,085 5,940 00:02:23,062
MR Numeric-EuclideanDistance 0,551 0,055 0,870 0,515 0,622 0,734 6,224 5,966 00:03:39,160
MR Numeric-FscoreSimilarity 0,392 0,042 0,846 0,550 0,645 0,742 6,085 5,940 00:02:01,011
MRA Nominal-EuclideanDistance 0,036 0,014 0,751 0,281 0,408 0,561 6,331 6,141 00:03:21,195
MRA Nominal-FscoreSimilarity 0,033 0,015 0,793 0,288 0,420 0,583 7,009 6,727 00:02:22,236
MRA Numeric-EuclideanDistance 0,036 0,014 0,751 0,281 0,408 0,561 6,331 6,141 00:03:00,482
MRA Numeric-FscoreSimilarity 0,033 0,015 0,793 0,288 0,420 0,583 7,009 6,727 00:02:16,401
GED - 0,173 0,024 0,736 0,246 0,367 0,522 5,532 6,552 00:01:41,938
LED - 0,147 0,038 0,710 0,253 0,360 0,501 5,874 6,071 00:02:08,769
BOA Nominal-EuclideanDistance 0,003 0,007 0,730 0,253 0,372 0,524 6,082 6,954 00:01:12,025
BOA Nominal-FscoreSimilarity 0,002 0,006 0,737 0,276 0,400 0,550 5,755 6,502 00:01:14,851
BOA Numeric-EuclideanDistance 0,003 0,007 0,730 0,253 0,372 0,524 6,082 6,954 00:01:12,758
BOA Numeric-FscoreSimilarity 0,002 0,006 0,737 0,276 0,400 0,550 5,755 6,502 00:01:14,538
3-gram Nominal-EuclideanDistance 0,025 0,013 0,759 0,335 0,446 0,582 5,531 5,772 00:03:45,207
3-gram Nominal-FscoreSimilarity 0,048 0,037 0,773 0,405 0,518 0,640 5,650 5,976 00:02:51,303
3-gram Numeric-EuclideanDistance 0,025 0,013 0,759 0,335 0,446 0,582 5,531 5,772 00:03:52,811
3-gram Numeric-FscoreSimilarity 0,048 0,037 0,773 0,405 0,518 0,640 5,650 5,976 00:02:33,086
Markov - 0,009 0,010 0,857 0,341 0,487 0,656 5,522 5,596 01:17:50,000
Random - 0,007 0,005 0,740 0,257 0,379 0,533 6,497 6,484 00:00:17,468

No clustering - 0,003 0,006 0,693 0,237 0,353 0,500 7,252 7,252 NA

Table D.10: Results of different trace clustering techniques with varying parameter
settings for event log ICP in case of the creation of 3 clusters.
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Event log ICP - 4 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,852 0,325 0,969 0,804 0,851 0,902 3,804 2,853 00:06:01,803
ActiTraCfreq mcs50tf100 0,876 0,277 0,970 0,522 0,674 0,822 4,026 4,119 00:49:55,948
ActiTraCfreq mcs100tf100 0,876 0,277 0,970 0,522 0,674 0,822 4,026 4,119 00:49:52,058
ActiTraCfreq mcs25tf95 0,772 0,262 0,974 0,810 0,864 0,917 3,698 2,866 00:03:00,308
ActiTraCfreq mcs50tf95 0,164 0,084 0,948 0,342 0,500 0,696 4,591 5,051 00:12:54,012
ActiTraCfreq mcs100tf95 0,174 0,073 0,948 0,320 0,478 0,681 4,262 5,404 00:51:10,125
ActiTraCMRA w25mcs25tf100 0,828 0,297 0,958 0,731 0,792 0,864 3,843 3,203 00:09:41,532
ActiTraCMRA w25mcs50tf100 0,807 0,263 0,954 0,659 0,752 0,844 4,103 3,720 00:09:27,517
ActiTraCMRA w25mcs100tf100 0,830 0,257 0,960 0,494 0,649 0,803 4,102 4,480 00:46:03,038
ActiTraCMRA w50mcs25tf100 0,799 0,332 0,951 0,748 0,811 0,876 3,108 2,831 00:07:22,457
ActiTraCMRA w50mcs50tf100 0,791 0,227 0,947 0,544 0,683 0,815 3,806 3,816 00:18:08,472
ActiTraCMRA w50mcs100tf100 0,807 0,221 0,953 0,528 0,678 0,818 3,763 3,886 00:37:14,662
ActiTraCMRA w100mcs25tf100 0,799 0,332 0,951 0,749 0,813 0,877 3,096 2,824 00:07:23,270
ActiTraCMRA w100mcs50tf100 0,791 0,229 0,947 0,546 0,685 0,816 3,791 3,807 00:17:55,316
ActiTraCMRA w100mcs100tf100 0,807 0,221 0,953 0,528 0,678 0,818 3,763 3,886 00:36:56,584
ActiTraCMRA w25mcs25tf95 0,030 0,035 0,960 0,379 0,543 0,733 4,910 5,236 00:13:27,260
ActiTraCMRA w25mcs50tf95 0,057 0,052 0,960 0,371 0,534 0,727 4,742 5,229 00:18:38,534
ActiTraCMRA w25mcs100tf95 0,022 0,023 0,955 0,332 0,490 0,690 4,756 5,708 00:47:05,428
ActiTraCMRA w50mcs25tf95 0,598 0,082 0,950 0,470 0,619 0,776 5,780 6,277 00:09:29,767
ActiTraCMRA w50mcs50tf95 0,638 0,065 0,955 0,502 0,630 0,769 5,576 7,215 00:14:35,353
ActiTraCMRA w50mcs100tf95 0,039 0,043 0,959 0,335 0,494 0,694 5,435 7,127 00:49:49,283
ActiTraCMRA w100mcs25tf95 0,571 0,081 0,949 0,467 0,615 0,772 5,434 6,097 00:09:34,595
ActiTraCMRA w100mcs50tf95 0,619 0,038 0,952 0,509 0,639 0,776 5,438 7,245 00:14:10,088
ActiTraCMRA w100mcs100tf95 0,097 0,064 0,957 0,339 0,500 0,701 4,643 5,940 00:48:44,097

MR Nominal-EuclideanDistance 0,562 0,067 0,893 0,524 0,636 0,752 6,185 5,852 00:03:23,119
MR Nominal-FscoreSimilarity 0,395 0,046 0,860 0,553 0,650 0,750 5,740 5,589 00:02:28,917
MR Numeric-EuclideanDistance 0,562 0,067 0,893 0,524 0,636 0,752 6,185 5,852 00:03:47,906
MR Numeric-FscoreSimilarity 0,395 0,046 0,860 0,553 0,650 0,750 5,740 5,589 00:02:18,628
MRA Nominal-EuclideanDistance 0,037 0,017 0,748 0,283 0,409 0,561 6,372 6,175 00:03:15,260
MRA Nominal-FscoreSimilarity 0,051 0,049 0,795 0,313 0,446 0,603 7,363 6,965 00:02:21,596
MRA Numeric-EuclideanDistance 0,037 0,017 0,748 0,283 0,409 0,561 6,372 6,175 00:03:10,800
MRA Numeric-FscoreSimilarity 0,051 0,049 0,795 0,313 0,446 0,603 7,363 6,965 00:02:14,345
GED - 0,179 0,023 0,836 0,288 0,425 0,600 5,606 6,184 00:01:46,563
LED - 0,151 0,026 0,847 0,303 0,433 0,602 6,133 6,203 00:02:11,296
BOA Nominal-EuclideanDistance 0,018 0,009 0,736 0,370 0,485 0,604 5,806 6,689 00:01:22,225
BOA Nominal-FscoreSimilarity 0,003 0,007 0,773 0,268 0,394 0,554 5,853 6,273 00:01:17,662
BOA Numeric-EuclideanDistance 0,018 0,009 0,736 0,370 0,485 0,604 5,806 6,689 00:01:22,881
BOA Numeric-FscoreSimilarity 0,003 0,007 0,773 0,268 0,394 0,554 5,853 6,273 00:01:18,038
3-gram Nominal-EuclideanDistance 0,029 0,030 0,821 0,448 0,553 0,672 5,142 5,573 00:03:51,285
3-gram Nominal-FscoreSimilarity 0,199 0,069 0,805 0,509 0,611 0,707 5,162 5,492 00:02:40,789
3-gram Numeric-EuclideanDistance 0,029 0,030 0,821 0,448 0,553 0,672 5,142 5,573 00:03:49,683
3-gram Numeric-FscoreSimilarity 0,199 0,069 0,805 0,509 0,611 0,707 5,162 5,492 00:02:32,133
Markov - 0,461 0,031 0,883 0,530 0,642 0,754 5,513 5,664 01:42:56,000
Random - 0,078 0,009 0,811 0,304 0,438 0,601 6,606 6,552 00:00:16,546

No clustering - 0,003 0,006 0,693 0,237 0,353 0,500 7,252 7,252 NA

Table D.11: Results of different trace clustering techniques with varying parameter
settings for event log ICP in case of the creation of 4 clusters.
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Event log ICP - 5 clusters

Technique Parameter settings PMW.A. PMA RW.A. PW.A. F1W.A. F2W.A. P/T-CDA P/T-CDW.A. Run time

ActiTraCfreq mcs25tf100 0,884 0,361 0,974 0,802 0,849 0,903 3,966 2,922 00:07:52,207
ActiTraCfreq mcs50tf100 0,888 0,318 0,973 0,532 0,684 0,829 4,036 4,119 00:50:27,167
ActiTraCfreq mcs100tf100 0,888 0,318 0,973 0,532 0,684 0,829 4,036 4,119 00:50:20,917
ActiTraCfreq mcs25tf95 0,770 0,245 0,976 0,804 0,857 0,913 3,909 2,914 00:04:08,884
ActiTraCfreq mcs50tf95 0,167 0,101 0,950 0,344 0,504 0,700 4,552 5,048 00:13:16,933
ActiTraCfreq mcs100tf95 0,177 0,099 0,949 0,321 0,480 0,682 4,119 5,400 01:11:13,640
ActiTraCMRA w25mcs25tf100 0,850 0,332 0,965 0,730 0,793 0,868 3,813 3,222 00:11:38,654
ActiTraCMRA w25mcs50tf100 0,831 0,295 0,960 0,672 0,762 0,852 4,062 3,718 00:10:42,608
ActiTraCMRA w25mcs100tf100 0,848 0,293 0,965 0,511 0,665 0,814 4,121 4,479 00:46:54,615
ActiTraCMRA w50mcs25tf100 0,816 0,356 0,955 0,742 0,808 0,876 3,280 2,880 00:08:28,628
ActiTraCMRA w50mcs50tf100 0,818 0,281 0,955 0,561 0,698 0,827 3,798 3,813 00:18:53,143
ActiTraCMRA w50mcs100tf100 0,831 0,271 0,959 0,538 0,687 0,826 3,824 3,892 00:37:59,973
ActiTraCMRA w100mcs25tf100 0,816 0,356 0,955 0,744 0,810 0,877 3,270 2,873 00:08:26,081
ActiTraCMRA w100mcs50tf100 0,818 0,284 0,955 0,563 0,700 0,829 3,791 3,804 00:18:38,550
ActiTraCMRA w100mcs100tf100 0,831 0,271 0,959 0,538 0,687 0,826 3,824 3,892 00:37:43,442
ActiTraCMRA w25mcs25tf95 0,070 0,064 0,961 0,391 0,554 0,742 4,605 5,135 00:13:38,573
ActiTraCMRA w25mcs50tf95 0,065 0,062 0,962 0,375 0,539 0,731 4,455 5,200 00:18:46,487
ActiTraCMRA w25mcs100tf95 0,029 0,039 0,957 0,336 0,496 0,696 4,586 5,688 00:47:12,912
ActiTraCMRA w50mcs25tf95 0,627 0,111 0,955 0,483 0,631 0,786 5,449 6,186 00:10:00,625
ActiTraCMRA w50mcs50tf95 0,642 0,077 0,960 0,511 0,639 0,777 5,347 7,168 00:14:56,117
ActiTraCMRA w50mcs100tf95 0,048 0,055 0,960 0,340 0,499 0,698 4,983 7,098 00:49:55,830
ActiTraCMRA w100mcs25tf95 0,577 0,089 0,954 0,472 0,621 0,778 5,174 6,036 00:10:06,485
ActiTraCMRA w100mcs50tf95 0,653 0,080 0,957 0,517 0,648 0,785 5,203 7,159 00:14:48,759
ActiTraCMRA w100mcs100tf95 0,101 0,074 0,958 0,343 0,504 0,704 4,372 5,923 00:48:49,253

MR Nominal-EuclideanDistance 0,432 0,084 0,868 0,606 0,672 0,754 6,016 5,642 00:03:31,702
MR Nominal-FscoreSimilarity 0,409 0,067 0,862 0,545 0,642 0,745 6,069 5,958 00:02:32,132
MR Numeric-EuclideanDistance 0,432 0,084 0,868 0,606 0,672 0,754 6,016 5,642 00:03:55,876
MR Numeric-FscoreSimilarity 0,409 0,067 0,862 0,545 0,642 0,745 6,069 5,958 00:02:23,517
MRA Nominal-EuclideanDistance 0,174 0,040 0,798 0,391 0,506 0,639 5,893 5,735 00:03:18,056
MRA Nominal-FscoreSimilarity 0,056 0,062 0,792 0,322 0,456 0,610 6,564 6,672 00:02:20,752
MRA Numeric-EuclideanDistance 0,174 0,040 0,798 0,391 0,506 0,639 5,893 5,735 00:03:10,888
MRA Numeric-FscoreSimilarity 0,056 0,062 0,792 0,322 0,456 0,610 6,564 6,672 00:02:12,998
GED - 0,180 0,026 0,839 0,276 0,413 0,593 5,186 6,199 00:01:46,000
LED - 0,151 0,028 0,853 0,305 0,434 0,603 5,685 6,270 00:01:45,825
BOA Nominal-EuclideanDistance 0,018 0,009 0,740 0,373 0,489 0,608 5,347 6,627 00:01:21,928
BOA Nominal-FscoreSimilarity 0,112 0,021 0,812 0,331 0,456 0,607 5,462 5,961 00:01:25,693
BOA Numeric-EuclideanDistance 0,018 0,009 0,740 0,373 0,489 0,608 5,347 6,627 00:01:23,303
BOA Numeric-FscoreSimilarity 0,112 0,021 0,812 0,331 0,456 0,607 5,462 5,961 00:01:26,271
3-gram Nominal-EuclideanDistance 0,047 0,050 0,826 0,446 0,552 0,673 5,017 5,507 00:03:50,472
3-gram Nominal-FscoreSimilarity 0,222 0,089 0,812 0,519 0,621 0,716 4,929 5,453 00:02:34,266
3-gram Numeric-EuclideanDistance 0,047 0,050 0,826 0,446 0,552 0,673 5,017 5,507 00:03:43,756
3-gram Numeric-FscoreSimilarity 0,222 0,089 0,812 0,519 0,621 0,716 4,929 5,453 00:02:44,179
Markov - 0,456 0,043 0,890 0,514 0,633 0,754 4,983 4,710 01:26:46,000
Random - 0,106 0,014 0,811 0,340 0,472 0,623 6,193 6,043 00:00:15,562

No clustering - 0,003 0,006 0,693 0,237 0,353 0,500 7,252 7,252 NA

Table D.12: Results of different trace clustering techniques with varying parameter
settings for event log ICP in case of the creation of 5 clusters.
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